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Samples from a point process. Can you recognize the model?
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Sure, Cox-Voronoi and Cox-Boolean.
Recall: Cox = doubly stochastic Poisson process.



And here?
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Well... ? Left: Matern cluster process driven by some turbulent field (driven by 2d
Navier-Stokes equations). Right: Matern II hard core model applied to a Cox
driven by the same turbulent field.



Some more patterns
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from astronomy, physics, ...
These patterns:

� Exhibit multi-scale properties (e.g. small repulsion, large cluster)
� We want model them with point process with a (very) large number of points

(partcles), say ∼ 10.000, in the window.
� Typically, we have only one original pattern (or, say, very few ones).
� ⇒ Ergodic learning of point processes?



Ergodic learning of point processes
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� Recall: Almost surely, any infinite realization of an ergodic point process alows
one to fully characterize its distribution and thus (in principle) to sample from
this distribution new realizations. ⇒ Spatial averaging!

� But in practice, we have only a finite learning window. Can we get
approximations of the unknown distribution?

Original image Synthesis 1 Synthesis 2
samples from “ergodic learning model”



So how it works?
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1. Choose statistics (descriptors, moments) that will “summarize” the
distribution and not fully “memorize” given patterns.

2. Specify a model deriving from these statistics. Typically a type of “maximum
entropy model”.

3. Find a way of generating samples from this model. Not always evident!



Outline of the remaining talk
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� Models (and their simulation methods)

– Maximum entropy models (rather theoretical)
– Particle gradient descent model ⇐
– Random search (benchmark; Torquato 2002, Tscheschel and Stoyan 2006)

� Spatial statistics

– Classical spatial statistics
– Wavelet-based representations (Mallat 2021, ...)⇐

� Testing results

– Visual,
– Spectrum,
– Topology analysis (persistent homology) ⇐
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� MODELS

– Maximum entropy models



Maximum entropy models
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� Based on a set of statistics

– calculate on the observed pattern ⇒ micro-canonical model,
– known expected values ⇒ macro–canonical model.

� Intuitively: model is “as random as possible” under constraints based on the
given statistics.



“Randomness” defined with respect to Poisson point process
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� Let L1,L2 be two probability distributions on M (of point processes), such
that L1 ≪ L2. The Kullback-Leibler divergence (or KL divergence) of L1

w.r.t. L2 is well defined by

KL(L1||L2) :=

∫

M

log(
dL1

dL2
)dL1.

� If L0 is the Poisson distribution on M and L ≪ L0 then

H(L) := −KL(L||L0)

is called the entropy of L (with respect to Poisson ditribution L0).



Macro-canonical model
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� Denote (unknown!?) point process Ξ ∼ L.
� Given (a vector of) statistics K of Ξ.
� Averaged constraints

E(K(Ξ)) = a, or some vector values a. (AC)

� Model:

argmax
L̂

H(L̂)

given constraints (AC)

� Under some technical assumptions the solution of the macro-canonical model
is given by the Gibbs point process.

� Computationally expensive: calculating solution for large dimension of K and
sampling from it.



Micro-canonical model
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� A given realization (of a point process) Ξ.
� Given (a vector of) statistics K of Ξ.
� Define the “energy” of a realization (of point measure) µ

EK(Ξ)(µ) :=
1

2
|K(µ) −K(Ξ)|2.

� Path-wise constraints

Ωǫ := {µ ∈ M : EK(Ξ)(µ) ≤ ǫ} for some ǫ > 0.

� Model:

argmax
L̂

H(L̂)

given L̂(Ωǫ) = 1

� The solution of the micro-canonical model is given by truncation of Poisson L0

to Ωǫ.
� Sampling computationally expensive (acceptance-rejection method!?).
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� MODELS

– Maximum entropy models
– Particle gradient descent model



Particle gradient descent on point measures
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� As for the micro-cannonical model: a given realization (of a point process) Ξ,
given (a vector of) statistics K of Ξ, the “energy” of (an arbitrary) realization
µ: EK(Ξ)(µ) := 1

2
|K(µ) −K(Ξ)|2.

� For some gradient step γ > 0, we define the gradient descent mapping

F : M
s −→ M

s

µ =
∑

i δxi 7−→
∑

i

δxi−γ∇xi
EK(Ξ)(µ). (1)

� F (µ) is a the push-forward of the measure µ by the mapping
Fµ,K(Ξ)(x) := x− γ∇xEK(Ξ)(µ); see Molchanov and Zuyev (2002).

� For any initial point measure µ0 ∈ M
s we iterate the gradient descent

function F :

µn = µn,K(Ξ)(µ0) = F (µn−1), n ≥ 1. (2)



Particle gradient descent model
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� For a given n ≥ 1, and the starting distribution L0 ∼ µ0, the n th iteration
of F defines the law Ln ∼ µn = µn,K(Ξ)(µ0).

� Ln = Ln,K(Ξ)(L0) is a n th pushforward operation on L0 “driven” by
K(Ξ).

� Setting a fixed number of iterations n as a stopping rule, we consider Ln as
model, called the gradient descent model driven by K(Ξ).

� Simulation form this model is straightforward, starting from some (say
Poisson) realization µ0 ∼ L0.

� No theoretical guarantees for Ln ≃ L(Ξ) except:

Theorem. If K and L0 are invariant w.r.t. some set of rigid motions
(translations, rotations, symmetries) on the torus, then Ln has the same
property.



Remarks on the gradient descent model
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� Inspiration from the micro-canonical model, however there is no guarantee that
the optimization reaches Ωǫ for any ǫ > 0.

� Fixed number of iterations and no configuration rejections ⇒ model reaches a
low energy level.

� Classical line-search methods in the optimization to adjust the gradient step γ
so as to ensure that the energy decreases as n grows.
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� MODELS

– Maximum entropy models
– Particle gradient descent model
– Random search



Random search (Tscheschel and Stoyan 2006)
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� As for the micro-cannonical model: a given realization (of a point process) Ξ,
given (a vector of) statistics K of Ξ, the “energy” of (an arbitrary) realization
µ: EK(Ξ)(µ) := 1

2
|K(µ) −K(Ξ)|2.

� Optimization step: at step n, given µn =
∑N

i=1 δxi,n

– a point chosen uniformly at random, say xj,n, for j ∈ {1, · · · , N}
– a candidate for a new point chosen uniformly at random in the observation

window y ∈ W .
– Then

µn+1 :=

{

µn − δxj,n + δy if EK(Ξ)(µn+1) < EK(Ξ)(µn)

µn otherwise.

� Observe: move the point one at a time,
possibly lot of rejected moves.
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� SPATIAL STATISTICS

– Good choice of statistics



Good choice of statistics
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One usually aims at finding the (vector of) statistics K satisfying the following
properties:

� Concentration property: K(Ξ) ≃ E[K(Ξ)] with high probability ⇒ not to
“memorize” a realization of Ξ.

� Sufficiency property: E(K(Ξ)) rich enough, strong (distributional)
discriminate power ⇒ “summarize” the unknown distribution.

Assuming ergodicity of Ξ, a natural choice consists in spatial averaging:

Ki(µ) =
1

|W |

∫

W

fi(Sxµ) dx µ ∈ M,

for a sufficiently rich class of functions f , with support not to large w.r.t. the
observation window W so, by ergodicity, Ki(µ) ≃ E[K(Ξ)].
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� SPATIAL STATISTICS (DESCRIPTORS)

– Good choice of statistics
– Classical summary characteristic



Classical spatial statistics
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� mean (intensity) E[Ξ(B)]/|B|,

� correlation functions ρ(x, y),

� Ripleys K-function K(r),

� k-nearest neighbor distances Dk(r),

� ...,

� void probabilities P(Ξ(B) = 0); full distribution characterization,

� Laplace transform E[exp(−
∫

fdΞ)]; full distribution characterization.
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� SPATIAL STATISTICS

– Good choice of statistics
– Classical summary characteristic
– Wavelet-based representations



Wavelet
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Following Bruna, Mallat, Bacry, Muzy (2015),
let ψ be a continuous, bounded, localized in space and frequency, complex valued
function on R

d of zero average
∫

Rd ψ(x) dx = 0.
Usually ψ is normalized so that

∫

Rd |ψ(x)| dx = 1.

We call ψ (d-dimensional) mother wavelet.

In applications d = 1 or 2. In this talk d = 2.



Example: 2D Morlet wavelet
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Morlet wavelet on the plane

ψ(x) = exp(i ω ·x) exp(−|x|2/2),

where i is the imaginary unit and ω ·x is the scalar product of some nonzero
vector parameter ω ∈ R

2, called spatial frequency, with x ∈ R
2.
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Real and Imaginary part of the Morlet wavelet with ω = (5.5, 0).



Scaling and rotating the mother wavelet
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Consider a discrete family of re-scaled and rotated wavelets

ψ(j,θ) = ψ(j,θ)(x) := 2−jdψ(2−jr−θx),

with the scale parameter j ∈ Z = { . . . ,−1, 0, 1, . . . } and the rotation
parameter θ ∈ [0, 2π); (rθx denotes the rotation of x ∈ R

2 by the angle θ with
respect to the origin).

ψ 7−→ ψ(j,θ)



Signal
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In this talk we are mostly interested in purely atomic signals Φ.

Using the formalism of point processes

Φ =
∑

i

δxi

where δx is the Dirac measure describing the unit atom at x.

Slightly more generally, atoms (points) can have marks Mi

considered as “weights”

Φ̃ =
∑

i

MiδXi
.

Slightly more general, signal is modeled as a (possibly signed) measure
Λ = Λ(dx) on R

d.



Wavelet transform of the signal
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Wavelet transform of (a realization of) Λ at scale 2j and angle θ, is a (random)
filed on R

d defined as a convolution of Λ with the wavelet ψ(j,θ):

(Λ ⋆ ψ(j,θ))(x) :=

∫

Rd

ψ(j,θ)(x− y) Λ(dy) .

Observe: The zero average property of the mother wavelet
∫

Rd ψ(x) dx = 0
implies that the wavelet transform Λ ⋆ ψ(j,θ)(x) at the scale j has larger absolute
values for x where the Λ is has more variability at this given scale. It (almost)
vanishes where Λ is (almost) uniform at this scale.



Wavelet transforms of a point pattern
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signal

signal wavelet transforms at different scales



Scattering moments: introducing non-linearity and averaging
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� Define the scattering fields as the modulus of the (complex valued) wavelet
transforms for j ∈ Z, θ ∈ [0, 2π)

Sj,θΦ̃(x) := |Φ̃ ⋆ ψ(j,θ)(x)|, x ∈ R
d.

� Define (empirical) scattering moments as the averages of the scattering fileds
over x in a given observation window W

ŜΦ̃(j, θ) :=
1

|W |

∫

W

Sj,θΦ̃(x) dx.

� In practice, the scale parameter is restricted to a finite window
j ∈ [jmin, jmax] such that the support of ψ(jmin,θ) “separates points” and
this of ψ(jmax,θ) covers the whole window. Some discrete set of angles
θ1, . . . , θmax ∈ [0, 2π) is considered.



Scattering moments — invariance properties

31 / 52

� Scattering moments provide some information about the given signal pattern
(data).

� They are Lipschitz-continuous with respect smooth signal deformations.
� They are (can be made) invariant with respect to some “distributional

symmetries” of the signal. If the signal can be assumed to have the same
symmetry properties then it can be captured, up to these symmetries, in a
more concise way.



Assuming stationary model
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� Assume some underlying stationary point process model for the signal Φ̃ on R
d.

That is, the observed realization of the signal (data) is assumed to be sampled
from the assumed distribution and restricted to the observation window.

� One considers also mathematical scattering moments as the expected values of
the scattering fields. By the stationairty of the model, one can calculate them,
without loss of generality, at the origin 0 ∈ R

d

S̄Φ̃(j, θ) := E[Sj,θΦ̃(0)].

� If moreover the point process Φ̃ model is assumed isotropic (rotation-invariant
distribution) the mathematial scattering moments do not depend on the angle:
S̄Φ̃(j, θ) = S̄Φ̃(j).



Properties of the mathematical scattering moments

33 / 52

� Mathematical scattering moments are characteristics of the assumed signal
distribution (mathematical model).

� The non-linearity produced by the modulus | · | make them (a priori) depend
on all correlation functions (which would not be the case if the square | · |2 of
the norm is taken).

� Open question: to what extend mathematical scattering moments characterize
the correlation functions of Φ̃ (and thus its distribution)? Asymptotic results
when j → −∞ and j → ∞ (at small and large scales) are known. Small
scales characterize the intensity (density) of the point process, large scale
characterize some long-range variance properties (hyper-uniformity,
hyper-fluctuations) ⇒ PhD thesis A. Brocahrd (2022)



Stationarity, isotropy — first invariance properties
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� Scattering moments are invariant with respect to all periodic translations of
the signal in the square window. Consequently a stationary signal can captured
with smaller description dimension (no need to describe the position the signal
with respect to, say, the center of the window).

� If an isotropic model of the signal can be assumed (rotation invariant
distribution), then averaging the scattering moments over different angles one
can further reduce the dimension of the signal descriptor.



Ergodicity — more invariance properties
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� Recall: Φ̃ is ergodic when the spatial averaging of one sample over a large
window is close to the mathematical expectation. (“One sees all local patters
on one big sample.”)

� In this case, for small scale j with respect to the observation window W

ŜΦ̃(j, θ) :=
1

|W |

∫

W

Sj,θΦ̃(x) d ≈ E[Sj,θΦ̃(0)] =: S̄Φ̃(j, θ).

Small-scale scattering moments are close to the mathematical constants and
thus invariant with respect to different realizations coming from the same
distribution. ⇒ Can be used to construct generative models of point patterns.
(in this talk)

� Larger scales carry additional information about the given data pattern up to
its exact characterization. ⇒ All scattering moment can be used to statistical
learning of signal. (Brochard, A., BB, Mallat, S. and Zhang, S. 2019).



Refinement I: Higher order scattering moments
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The second order scattering transforms of Φ̃ at scales 2j1, 2j2 and angles θ1, θ2
are defined as the first order scattering moments at scale 2j2 and angle θ2 of the
first order scattering transform Sj2,θ2Φ̃(x) taken as the signal.

Sj1,θ1,j2,θ2Φ̃(x) := ||Φ̃ ⋆ ψ(j1,θ1)| ⋆ ψ(j2,θ2)(x))| .

By empirical averaging over the observation window (or taking mathematical
expectation) one defines the corresponding second order empirical (or
mathematical) scattering moments.

ŜΦ̃(j1, θ1, j2, θ2) :=
1

|W |

∫

W

Sj2,θ2Φ̃(x) dx,

S̄Φ̃(j1, θ1, j2, θ2) := E[Sj2,θ2Φ̃(0)].

Higher order scattering moments are defined similarly by the induction.



Cascade of higher order scattering moments
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!

|Φ ⋆ ψ(j1,θ2)|

S(j1,θ2)Φ

S0Φ

|ψ(j2,θ1) ⋆ |Φ ⋆ ψ(j1,θ2)||

|Φ ⋆ ψ(j1,θ1)|

S(j1,θ2,j2,θ1)Φ



Refinement II: wavelet phase harmonics
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Goal: capture correlations between scales and orientations.
Phase acceleration — refined non-linearity: for all z ∈ C, k ∈ Z

[z]k := |z|eikϕ(z), where ϕ(z) is the complex argument of z.

phase acceleration allowing for non-null correlation the scattering transforms

j, θ, j′, θ′ :



Refinement II: wavelet phase harmonics
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Covariance between wavelet transforms at different scales and orientations:
For λ := (j, θ), µλ,k :=

∫

W
[Φ̃ ⋆ ψλ]

k(x) dx.
Similarly µλ′,k′ λ′ := (j′, θ′). Wavelet phase harmonics

Cλ,λ′(Φ) :=

∫

W

(

[Φ̃ ⋆ ψλ]
k(x) − µλ,k

) (

[Φ̃ ⋆ ψλ′]k
′

(x) − µλ′,k′

)∗

dx.
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� TESTING RESULTS

– Visual evaluation



Main parameters
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� Number of points in the given image: from 1900 up to 13000 points.
� Statistics K (descriptors) Wavelet phase harmonics based on bump steerable

wavelets (Mallat et al. 2020).
� Scales 0 ≤ j < J = J(N); where

N = size of observation window/size of pixel;
We take N = 128 and N = 256.
J = log2(N) − 2 — “memorizing image”,
J = log2(N) − 3 — good “learning distribution”.

� Number of statistics (dimension of K)
O(number of angles2 × number of scales2) ≃ 3 000− 5 000. (We take
number of angles 8).

� Number of iterations (L-BFGS optimization) from 400 to 500.



“Memorizing” samples modulo random translation
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Voronoi Small circles Big circles
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Statistics K based on wavelets of all scales, up to the size of the window.



Samples from our random when removing too large scales
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Voronoi Small circles Big circles
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Spectrum comparison
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Voronoi Small circles Big circles
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Discrete Fourier transform (DFT) of a counting measure µ =
∑

u δxu
∈ M on the (square)

window Ws = [−s, s[2 at integer frequency m ∈ Z
2

Fm(µ) :=

∫
Ws

e
−iπmx/s

µ(dx) =
∑
u

e
−iπmxu/s

.

This is an asymptotically (when s → ∞) non-biased estimator of density of the Bartlett spectrum

of point processes.



Originals and samples from model for turbulence processes
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Hard-core Poisson Cluster
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Turbulence models — spectrum comparison

46 / 52

Hard-core Poisson Cluster
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Persistent homology (in topology data analysis, TDA)
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� Visual evaluation can be more discriminate, but is subjective. We need a tool
to capture the geometric structures ⇒ persistence diagrams (Boissonnat,
Chazal, Yvinec M 2018).

– For all radius r > 0 on construct the Gilbert graph connecting points of µ
closer to each other than r.

– “Fill-in” the triangles (triplets of points joined by edges) ⇒ 2-skeleton of
the Vietoris-Rips (VR) complex on µ.

– Observe holes formed when radius r grows from r = 0: each hole has a
birth radius r > 0) and a (larger) death radius (when completely filled-in
by the triangles).

� “Our” persistence diagram of µ is the collection of pairs of radii: (birth,death)
of holes ⇒ “diagram points” in positive orthant on R

2.
� For two patterns µ1, µ2 we calculate their Wasserstein distances between their

corresponding persistent diagrams;TDAstats and/or TDA soft.
� For many patterns µi, represent every persistent diagram as a “dot” on the

plane (using standard Multi Dimensional Scaling).



Generative model vs original distribution via TDA
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Cox Voronoi Cox Big circles Turbulence hardcore

For each model there are 10 “dots” representing (via TDA analysis) i.i.d.
realizations of the original distribution and 10 “dots” representing i.i.d. realizations
from the generative model estimated on one of the original realizations (marked by
the black dot).



Generative model vs original distribution via TDA
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Cox — three distributions Turbulence — three distributions



Random search (RS) vs Gradient descent (GD) model
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Time computing comparison

Energy error Random search Gradient descent

e = 9, 00.10−4 19870 (1h04m) 52 (0m35s)

e = 4, 76.10−4 29805 (1h36m) 69 (0m45s)

Speed comparison between random search and gradient descent, in number of
iterations (computation time in parenthesis) for the synthesis of Poisson Voronoi
patterns. The time per iteration in the gradient descent method is larger, due to
the possible several energy (and gradient) evaluations for the line search. However,
the total amount of time is much lower.



RS+NND vs GD+WPH models — visual comparison
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Original RS+NND GD+WPH
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RS+NND Random search with nearest neighbor distance; Tscheschel and Stoyan (2006)

WPH+GD Wavelet phase harmonics with gradient descent.



For more details, see:
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� Brochard, A., BB, Mallat, S. and Zhang, S. (2022). Particle gradient descent
model for point process generation. Statistics and Computing 32, 1-25,
https://arxiv.org/abs/2010.14928

� Brochard, A. Wavelet-based representations of point processes for modelling
and statistical learning PhD thesis, (2022)
https://tel.archives-ouvertes.fr/tel-03666508

Thank you!

https://arxiv.org/abs/2010.14928
 https://tel.archives-ouvertes.fr/tel-03666508
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