Rouen - September 22, 2022

Comprendre la structure topologique des données : une introduction à l'homologie persistante.

Frédéric Chazal
DataShape team
Inria \& Laboratoire de Mathématiques d'Orsay Institut DATAIA Université Paris-Saclay

universite̊ PARIS-SACLAY

What is Topological Data Analysis (TDA)?

[Cell population -
cytometry - MetaFora courtesy]

[Porous material (IFPEN courtesy)]

[Sensors (Sysnav courtesy)]

Modern data carry complex, but important, geometric/topological structure!

What is Topological Data Analysis (TDA)?

Data

Topological Data Analysis (TDA) is a recent field whose aim is to :

- infer relevant topological and geometric features from complex data,
- take advantage of topological/geometric information for further Data Analysis, Machine Learning and AI tasks :
- using topological features in ML pipelines,
- taking advantage of topological information to improve ML pipelines.

A classical TDA pipeline

2. Compute multiscale topol. signatures : persistent homology
3. Take advantage of the signature for further Machine Learning and Al tasks : Statistical aspects and representations of persistence

Representations of persistence

Persistent homology Starting with a few examples

A general mathematical framework to encode the evolution of the topology (homology) of families of nested spaces (filtrations).

- $90^{\prime} s$: size theory (P. Frosini et al), framed Morse complex and stability (S.A. Barannikov).
- 2002 - 2005 : persistent homology (H. Edelsbrunner et al, Carlsson et al).
- important mathematical and practical developments since the 2000's.

Persistent homology for functions

- Tracking and encoding the evolution of the connected components (0-dimensional homology) of the sublevel sets of a function
- The family of sublevel sets of a function is an example of filtration.

Persistent homology for functions

- Tracking and encoding the evolution of the connected components (0-dimensional homology) of the sublevel sets of a function
- The family of sublevel sets of a function is an example of filtration.

Persistent homology for functions

- Tracking and encoding the evolution of the connected components (0-dimensional homology) of the sublevel sets of a function
- The family of sublevel sets of a function is an example of filtration.

Persistent homology for functions

- Tracking and encoding the evolution of the connected components (0-dimensional homology) of the sublevel sets of a function
- The family of sublevel sets of a function is an example of filtration.

Persistent homology for functions

- Tracking and encoding the evolution of the connected components (0-dimensional homology) of the sublevel sets of a function
- The family of sublevel sets of a function is an example of filtration.

Persistent homology for functions

- Tracking and encoding the evolution of the connected components (0-dimensional homology) of the sublevel sets of a function
- The family of sublevel sets of a function is an example of filtration.

Persistent homology for functions

- Tracking and encoding the evolution of the connected components (0-dimensional homology) of the sublevel sets of a function
- The family of sublevel sets of a function is an example of filtration.

Persistent homology for functions

- Tracking and encoding the evolution of the connected components (0-dimensional homology) of the sublevel sets of a function
- The family of sublevel sets of a function is an example of filtration.
- Finite set of intervals (barcode) encodes births/deaths of topological features.

Persistent homology for functions

- Tracking and encoding the evolution of the connected components (0-dimensional homology) of the sublevel sets of a function
- The family of sublevel sets of a function is an example of filtration.
- Finite set of intervals (barcode) encodes births/deaths of topological features.

Persistent homology for functions

Persistent homology for functions

$$
\begin{gathered}
f_{P}: \mathbb{R}^{2} \rightarrow \mathbb{R} \\
x \rightarrow \min _{p \in P}\|x-p\|_{2}
\end{gathered}
$$

barcode for holes (1-d homology)

Persistent homology for functions

$$
\begin{gathered}
f_{P}: \mathbb{R}^{2} \rightarrow \mathbb{R} \\
x \rightarrow \min _{p \in P}\|x-p\|_{2}
\end{gathered}
$$

barcode for holes (1-d homology)

Persistent homology for functions

Tracking and encoding the evolution of the connected components (0-dimensional homology) and cycles (1-dimensional homology) of the sublevel sets.

Homology : an algebraic way to rigorously formalize the notion of k-dimensional cycles through a vector space (or a group), the homology group whose dimension is the number of "independent" cycles (the Betti number).

Stability properties

Distance between persistence diagrams

The bottleneck distance between two diagrams D_{1} and D_{2} is

$$
d_{B}\left(D_{1}, D_{2}\right)=\inf _{\gamma \in \Gamma_{p \in D_{1}}} \sup _{p}\|p-\gamma(p)\|_{\infty}
$$

where Γ is the set of all the bijections between D_{1} and D_{2} and $\|p-q\|_{\infty}=$ $\max \left(\left|x_{p}-x_{q}\right|,\left|y_{p}-y_{q}\right|\right)$.

Stability properties

Theorem (Stability) :
For any tame functions $f, g: \mathbb{X} \rightarrow \mathbb{R}, d_{B}\left(\mathrm{D}_{f}, \mathrm{D}_{g}\right) \leq\|f-g\|_{\infty}$.

Persistent homology for point clouds

- Filtrations allow to construct "shapes" representing the data in a multiscale way.
- Persistent homology: encode the evolution of the topology across the scales \rightarrow multi-scale topological signatures.
- A general and well-studied mathematical framework.

Persistent homology for point clouds

- Filtrations allow to construct "shapes" representing the data in a multiscale way.
- Persistent homology: encode the evolution of the topology across the scales \rightarrow multi-scale topological signatures.
- A general and well-studied mathematical framework.

Persistent homology for point clouds

- Filtrations allow to construct "shapes" representing the data in a multiscale way.
- Persistent homology : encode the evolution of the topology across the scales \rightarrow multi-scale topological signatures.
- A general and well-studied mathematical framework.

Persistent homology for point clouds

- Filtrations allow to construct "shapes" representing the data in a multiscale way.
- Persistent homology: encode the evolution of the topology across the scales \rightarrow multi-scale topological signatures.
- A general and well-studied mathematical framework.

Persistent homology for point clouds

- Filtrations allow to construct "shapes" representing the data in a multiscale way.
- Persistent homology : encode the evolution of the topology across the scales \rightarrow multi-scale topological signatures.
- A general and well-studied mathematical framework.

Persistence barcode

Simplicial complexes, filtrations, homology and persistent homology

Simplicial complexes

Given a set $P=\left\{p_{0}, \ldots, p_{k}\right\} \subset \mathbb{R}^{d}$ of $k+1$ affinely independent points, the k dimensional simplex σ, or k-simplex for short, spanned by P is the set of convex combinations

$$
\sum_{i=0}^{k} \lambda_{i} p_{i}, \quad \text { with } \quad \sum_{i=0}^{k} \lambda_{i}=1 \quad \text { and } \quad \lambda_{i} \geq 0
$$

The points p_{0}, \ldots, p_{k} are called the vertices of σ.

Simplicial complexes

A (finite) simplicial complex K in \mathbb{R}^{d} is a (finite) collection of simplices such that :

1. any face of a simplex of K is a simplex of K,
2. the intersection of any two simplices of K is either empty or a common face of both.

The underlying space of K, denoted by $|K| \subset \mathbb{R}^{d}$ is the union of the simplices of K.

Abstract simplicial complexes

Let P be a set. An abstract simplicial complex K with vertex set P is a set of finite subsets of P satisfying the two conditions :

1. The elements of P belong to K.
2. If $\tau \in K$ and $\sigma \subseteq \tau$, then $\sigma \in K$.

The elements of K are the simplices.

IMPORTANT

Simplicial complexes can be seen at the same time as geometric/topological spaces (good for top./geom. inference) and as combinatorial objects (abstract simplicial complexes, good for computations).

Homology in a nutshell (with coeff. in $\mathbb{Z} / 2 \mathbb{Z}$)

Formalize the notion of connected components, cycles/holes, voids... in a topological space (here we will restrict to simplicial complexes).

- 2 connected components (0-dim homology)
- 4 cycles (1-dim homology)
- 1 void (2-dim homology)

Homology in a nutshell (with coeff. in $\mathbb{Z} / 2 \mathbb{Z}$)

The space of k-chains :

Let K be a d-dimensional simplicial complex. Let $k \in\{0,1, \cdots, d\}$ and $\left\{\sigma_{1}, \cdots, \sigma_{p}\right\}$ be the set of k-simplices of K.
k-chain :

$$
c=\sum_{i=1}^{p} \varepsilon_{i} \sigma_{i} \text { with } \quad \varepsilon_{i} \in \mathbb{Z} / 2 \mathbb{Z}=\{0,1\}
$$

Sum of k-chains :

$$
c+c^{\prime}=\sum_{i=1}^{p}\left(\varepsilon_{i}+\varepsilon_{i}^{\prime}\right) \sigma_{i} \text { and } \lambda . c=\sum_{i=1}^{p}\left(\lambda \varepsilon_{i}^{\prime}\right) \sigma_{i}
$$

where the sums $\varepsilon_{i}+\varepsilon_{i}^{\prime}$ and the products $\lambda \varepsilon_{i}$ are modulo 2 .

Homology in a nutshell (with coeff. in $\mathbb{Z} / 2 \mathbb{Z}$)

The boundary operator :

The boundary $\partial \sigma$ of a k-simplex σ is the sum of its $(k-1)$-faces. This is a ($k-1$)-chain.

$$
I f \sigma=\left[v_{0}, \cdots, v_{k}\right] \text { then } \partial_{k} \sigma=\sum_{i=0}^{k}(-1)^{i}\left[v_{0} \cdots \hat{v}_{i} \cdots v_{k}\right]
$$

The boundary operator is the linear map defined by

$$
\begin{aligned}
\partial_{k}: \mathcal{C}_{k}(K) & \rightarrow \mathcal{C}_{k-1}(K) \\
c & \rightarrow \partial_{k} c=\sum_{\sigma \in c} \partial_{k} \sigma
\end{aligned}
$$

$$
\partial_{k} \partial_{k+1}:=\partial_{k} \circ \partial_{k+1}=0
$$

Homology in a nutshell (with coeff. in $\mathbb{Z} / 2 \mathbb{Z}$)

Cycles and boundaries :

The chain complex associated to a complex K of dimension d
$\emptyset \rightarrow \mathcal{C}_{d}(K) \xrightarrow{\partial} \mathcal{C}_{d-1}(K) \xrightarrow{\partial} \cdots \mathcal{C}_{k+1}(K) \xrightarrow{\partial} \mathcal{C}_{k}(K) \xrightarrow{\partial} \cdots \mathcal{C}_{1}(K) \xrightarrow{\partial} \mathcal{C}_{0}(K) \xrightarrow{\partial}$
k-cycles :

$$
Z_{k}(K):=\operatorname{ker}\left(\partial: \mathcal{C}_{k} \rightarrow \mathcal{C}_{k-1}\right)=\left\{c \in \mathcal{C}_{k}: \partial c=\emptyset\right\}
$$

k-boundaries :

$$
B_{k}(K):=\operatorname{im}\left(\partial: \mathcal{C}_{k+1} \rightarrow \mathcal{C}_{k}\right)=\left\{c \in \mathcal{C}_{k}: \exists c^{\prime} \in \mathcal{C}_{k+1}, c=\partial c^{\prime}\right\}
$$

$$
B_{k}(K) \subset Z_{k}(K) \subset \mathcal{C}_{k}(K)
$$

Homology in a nutshell (with coeff. in $\mathbb{Z} / 2 \mathbb{Z}$)

Homology groups and Betti numbers :

$$
B_{k}(K) \subset Z_{k}(K) \subset \mathcal{C}_{k}(K)
$$

- The $k^{t h}$ homology group of $K: H_{k}(K)=Z_{k} / B_{k}$
- Tout each cycle $c \in Z_{k}(K)$ corresponds its homology class $c+$ $B_{k}(K)=\left\{c+b: b \in B_{k}(K)\right\}$.
- Two cycles c, c^{\prime} are homologous if they are in the same homology class : $\exists b \in B_{k}(K)$ s. t. $b=c^{\prime}-c\left(=c^{\prime}+c\right)$.
- The $k^{t h}$ Betti number of $K: \beta_{k}(K)=\operatorname{dim}\left(H_{k}(K)\right)$.

Remark : $\beta_{0}(K)=$ number of connected components of K.

Cycles and boundaries

Filtrations of simplicial complexes

- A filtered simplicial complex (or a filtration) \mathbb{K} built on top of a set X is a family ($K_{a} \mid a \in \mathbf{T}$), $\mathbf{T} \subseteq \mathbb{R}$, of subcomplexes of some fixed simplicial complex K with vertex set X s. t. $K_{a} \subseteq K_{b}$ for any $a \leq b$.
- More generaly, filtration = nested family of topological spaces indexed by \mathbf{T}.

Persistent homology of a filtered simplicial complexe encodes the evolution of the homology of the subcomplexes.

Filtrations of simplicial complexes

- A filtered simplicial complex (or a filtration) \mathbb{K} built on top of a set X is a family ($K_{a} \mid a \in \mathbf{T}$), $\mathbf{T} \subseteq \mathbb{R}$, of subcomplexes of some fixed simplicial complex K with vertex set X s. t. $K_{a} \subseteq K_{b}$ for any $a \leq b$.
- More generaly, filtration = nested family of topological spaces indexed by \mathbf{T}.

Many examples and ways to design filtrations depending on the application and targeted objectives : sublevel and upperlevel sets, Čech complex,...

Sublevel set filtration associated to a function

- f a real valued function defined on the vertices of K
- For $\sigma=\left[v_{0}, \cdots, v_{k}\right] \in K, f(\sigma)=\max _{i=0, \cdots, k} f\left(v_{i}\right)$
- The simplices of K are ordered according increasing f values (and dimension in case of equal values on different simplices).

Sublevel set filtration associated to a function

- f a real valued function defined on the vertices of K
- For $\sigma=\left[v_{0}, \cdots, v_{k}\right] \in K, f(\sigma)=\max _{i=0, \cdots, k} f\left(v_{i}\right)$
- The simplices of K are ordered according increasing f values (and dimension in case of equal values on different simplices).

Example : the Vietoris-Rips filtration

Let V be a point cloud (in a metric space (X, d)).

The Vietoris-Rips complex $\operatorname{Rips}(V)$ is the filtered simplicial complex indexed by \mathbb{R} whose vertex set is V and defined by :

$$
\sigma=\left[p_{0} p_{1} \cdots p_{k}\right] \in \operatorname{Rips}(V, \alpha) \quad \text { iff } \forall i, j \in\{0, \cdots, k\}, d\left(p_{i}, p_{j}\right) \leq \alpha
$$

Easy to compute and fully determined by its 1 -skeleton

Stability properties

"Stability theorem" : Close spaces/data sets have close persistence diagrams !

If \mathbb{X}, \mathbb{Y} are compact metric spaces, then

Bottleneck distance
Gromov-Hausdorff distance

$$
\begin{aligned}
& d_{G H}(\mathbb{X}, \mathbb{Y}):=\inf _{\mathbb{Z}, \gamma_{1}, \gamma_{2}} d_{H}\left(\gamma_{1}(\mathbb{X}), \gamma_{2}(\mathbb{X})\right) \\
& \mathbb{Z} \text { metric space, } \gamma_{1}: \mathbb{X} \rightarrow \mathbb{Z} \text { and } \gamma_{2}: \mathbb{Y} \rightarrow \mathbb{Z} \\
& \text { isometric embeddings. }
\end{aligned}
$$

Rem : This result also holds for other families of filtrations (particular case of a more general thm).

Hausdorff distance

Let $A, B \subset M$ be two compact subsets of a metric space (M, d)

$$
d_{H}(A, B)=\max \left\{\sup _{b \in B} d(b, A), \sup _{a \in A} d(a, B)\right\}
$$

where $d(b, A)=\sup _{a \in A} d(b, a)$.

An algorithm to compute Betti numbers

Input : A filtration of a simplicial complex $\emptyset=K^{0} \subset K^{1} \subset \cdots \subset K^{m}=K$, s. t. $K^{i+1}=K^{i} \cup \sigma^{i+1}$ where σ^{i+1} is a simplex of K.

Output : The Betti numbers $\beta_{0}, \beta_{1}, \cdots, \beta_{d}$ of K.

$$
\begin{aligned}
& \beta_{0}=\beta_{1}=\cdots=\beta_{d}=0 ; \\
& \text { for } i=1 \text { to } m \\
& \quad k=\operatorname{dim} \sigma^{i}-1 \text {; } \\
& \text { if } \sigma^{i} \text { is contained in a }(k+1) \text {-cycle in } K^{i} \\
& \quad \text { then } \beta_{k+1}=\beta_{k+1}+1 ; \\
& \text { else } \beta_{k}=\beta_{k}-1 ; \\
& \text { end if; } \\
& \text { end for ; } \\
& \text { output }\left(\beta_{0}, \beta_{1}, \cdots, \beta_{d}\right) ;
\end{aligned}
$$

An algorithm to compute Betti numbers

Input : A filtration of a simplicial complex $\emptyset=K^{0} \subset K^{1} \subset \cdots \subset K^{m}=K$, s. t. $K^{i+1}=K^{i} \cup \sigma^{i+1}$ where σ^{i+1} is a simplex of K.

Output : The Betti numbers $\beta_{0}, \beta_{1}, \cdots, \beta_{d}$ of K.

```
\(\beta_{0}=\beta_{1}=\cdots=\beta_{d}=0 ;\)
for \(i=1\) to \(m\)
    \(k=\operatorname{dim} \sigma^{i}-1\);
    if \(\sigma^{i}\) is contained in a \((k+1)\)-cycle in \(K^{i}\)
        then \(\beta_{k+1}=\beta_{k+1}+1\);
    else \(\beta_{k}=\beta_{k}-1\);
    end if;
end for ;
output \(\left(\beta_{0}, \beta_{1}, \cdots, \beta_{d}\right)\);
```


An algorithm to compute Betti numbers

Input: A filtration of a simplicial complex $\emptyset=K^{0} \subset K^{1} \subset \cdots \subset K^{m}=K$, s. t. $K^{i+1}=K^{i} \cup \sigma^{i+1}$ where σ^{i+1} is a simplex of K.

Output: The Betti numbers $\beta_{0}, \beta_{1}, \cdots, \beta_{d}$ of K.

```
\(\beta_{0}=\beta_{1}=\cdots=\beta_{d}=0 ;\)
for \(i=1\) to \(m\)
    \(k=\operatorname{dim} \sigma^{i}-1\);
    if \(\sigma^{i}\) is contained in a \((k+1)\)-cycle in \(K^{i}\)
        then \(\beta_{k+1}=\beta_{k+1}+1\);
    else \(\beta_{k}=\beta_{k}-1\);
    end if;
end for ;
output \(\left(\beta_{0}, \beta_{1}, \cdots, \beta_{d}\right)\);
```

Remark: At the $i^{\text {th }}$ step of the algorithm, the vector $\left(\beta_{0}, \cdots, \beta_{d}\right)$ stores the Betti numbers of K^{i}.

An algorithm to compute Betti numbers

Input: A filtration of a simplicial complex $\emptyset=K^{0} \subset K^{1} \subset \cdots \subset K^{m}=K$, s. t. $K^{i+1}=K^{i} \cup \sigma^{i+1}$ where σ^{i+1} is a simplex of K.

Output : The Betti numbers $\beta_{0}, \beta_{1}, \cdots, \beta_{d}$ of K.

```
\(\beta_{0}=\beta_{1}=\cdots=\beta_{d}=0 ;\)
for \(i=1\) to \(m\)
    \(k=\operatorname{dim} \sigma^{i}-1\);
    if \(\sigma^{i}\) is contained in a \((k+1)\)-cycle in \(K^{i}\)
        then \(\beta_{k+1}=\beta_{k+1}+1\);
    else \(\beta_{k}=\beta_{k}-1\);
    end if;
end for ;
output \(\left(\beta_{0}, \beta_{1}, \cdots, \beta_{d}\right)\);
```

Definition : A $(k+1)$-simplex σ^{i} is positive if it is contained in a $(k+1)$-cycle in K^{i}. It is regative otherwise.

$$
\beta_{k}(K)=\sharp \text { (positive simplices) }-\sharp \text { (negative simplices) }
$$

From homology to persistent homology

Input : A filtration of a simplicial complex $\emptyset=K^{0} \subset K^{1} \subset \cdots \subset K^{m}=K$, s. t. $K^{i+1}=K^{i} \cup \sigma^{i+1}$ where σ^{i+1} is a simplex of K.

Output : The Betti numbers $\beta_{0}, \beta_{1}, \cdots, \beta_{d}$ of K.

```
\(\beta_{0}=\beta_{1}=\cdots=\beta_{d}=0 ;\)
for \(i=1\) to \(m\)
    \(k=\operatorname{dim} \sigma^{i}-1\);
    if \(\sigma^{i}\) is contained in a \((k+1)\)-cycle in \(K^{i}\)
        then \(\beta_{k+1}=\beta_{k+1}+1\);
    else \(\beta_{k}=\beta_{k}-1\);
    end if;
end for;
output \(\left(\beta_{0}, \beta_{1}, \cdots, \beta_{d}\right)\);
```

The algorithm can be easily adapted to keep track of an homology basis and pairs positive simplices (birth of a new homological class) to negative simplices (death of an existing homology class).

Persistent homology of filtered simplicial complexes

Let $K=\left(K_{a} \mid a \in \mathbf{R}\right)$ be a finite filtered simplicial complex with N simplicices and let $K_{a_{1}} \subset K_{a_{2}} \subset \cdots \subset K_{a_{N}}$ be the discrete filtration induced by the entering times of the simplices: $K_{a_{i}} \backslash K_{a_{i-1}}=\sigma_{a_{i}}$.

Persistent homology of filtered simplicial complexes

Let $K=\left(K_{a} \mid a \in \mathbf{R}\right)$ be a finite filtered simplicial complex with N simplicices and let $K_{a_{1}} \subset K_{a_{2}} \subset \cdots \subset K_{a_{N}}$ be the discrete filtration induced by the entering times of the simplices : $K_{a_{i}} \backslash K_{a_{i-1}}=\sigma_{a_{i}}$.

Process the simplices according to their order of entrance in the filtration :

$$
\text { Let } \left.k=\operatorname{dim} \sigma_{a_{i}} \text { (ie. } \sigma_{a_{i}}=\left[v_{0}, \cdots, v_{k}\right]\right)
$$

Persistent homology of filtered simplicial complexes

Let $K=\left(K_{a} \mid a \in \mathbf{R}\right)$ be a finite filtered simplicial complex with N simplicices and let $K_{a_{1}} \subset K_{a_{2}} \subset \cdots \subset K_{a_{N}}$ be the discrete filtration induced by the entering times of the simplices: $K_{a_{i}} \backslash K_{a_{i-1}}=\sigma_{a_{i}}$.

Process the simplices according to their order of entrance in the filtration :

$$
\text { Let } \left.k=\operatorname{dim} \sigma_{a_{i}} \text { (ie. } \sigma_{a_{i}}=\left[v_{0}, \cdots, v_{k}\right]\right)
$$

Case 1 : adding $\sigma_{a_{i}}$ to $K_{a_{i-1}}$ creates a new k-dimensional topological feature in $K_{a_{i}}$ (new homology class in H_{k}).

\Rightarrow the birth of a k-dim feature is registered.

Persistent homology of filtered simplicial complexes

Let $K=\left(K_{a} \mid a \in \mathbf{R}\right)$ be a finite filtered simplicial complex with N simplicices and let $K_{a_{1}} \subset K_{a_{2}} \subset \cdots \subset K_{a_{N}}$ be the discrete filtration induced by the entering times of the simplices: $K_{a_{i}} \backslash K_{a_{i-1}}=\sigma_{a_{i}}$.

Process the simplices according to their order of entrance in the filtration :

$$
\text { Let } k=\operatorname{dim} \sigma_{a_{i}} \text { (ie. } \sigma_{a_{i}}=\left[v_{0}, \cdots, v_{k}\right] \text {) }
$$

Case 1: adding $\sigma_{a_{i}}$ to $K_{a_{i-1}}$ creates a new k-dimensional topological feature in $K_{a_{i}}$ (new homology class in H_{k}).

Case 2 : adding $\sigma_{a_{i}}$ to $K_{a_{i-1}}$ kills a ($k-1$)-dimensional topological feature in $K_{a_{i}}$ (homology class in H_{k-1}).

\Rightarrow persistence algo. pairs the simplex $\sigma_{a_{i}}$ to the simplex $\sigma_{a_{j}}$ that gave birth to the killed feature.

Persistent homology of filtered simplicial complexes

Process the simplices according to their order of entrance in the filtration :

$$
\text { Let } k=\operatorname{dim} \sigma_{a_{i}}\left(\text { ie. } \sigma_{a_{i}}=\left[v_{0}, \cdots, v_{k}\right]\right)
$$

Case 1: adding $\sigma_{a_{i}}$ to $K_{a_{i-1}}$ creates a new k-dimensional topological feature in $K_{a_{i}}$ (new homology class in H_{k}).

$$
K_{a_{i-1}}
$$

\Rightarrow persistence algo. pairs the simplex $\sigma_{a_{i}}$ to the simplex $\sigma_{a_{j}}$ that gave birth to the killed feature.

Persistent homology of filtered simplicial complexes

Process the simplices according to their order of entrance in the filtration :

$$
\text { Let } k=\operatorname{dim} \sigma_{a_{i}}\left(\text { ie. } \sigma_{a_{i}}=\left[v_{0}, \cdots, v_{k}\right]\right)
$$

Case 1: adding $\sigma_{a_{i}}$ to $K_{a_{i-1}}$ creates a new k-dimensional topological feature in $K_{a_{i}}$ (new homology class in H_{k}).

$$
K_{a_{i-1}}
$$

Case 2 : adding $\sigma_{a_{i}}$ to $K_{a_{i-1}}$ kills a ($k-1$)-dimensional topological feature in $K_{a_{i}}$ (homology class in H_{k-1}).

\Rightarrow persistence algo. pairs the simplex $\sigma_{a_{i}}$ to the simplex $\sigma_{a_{j}}$ that gave birth to the killed feature.

Important to remember: the persistence pairs are determined by the

$$
\rightarrow \quad\left(\sigma_{a_{j}}, \sigma_{a_{i}}\right): \text { persistence pair }
$$ order on the simplices; the corresponding $\rightarrow\left(a_{j}, a_{i}\right) \in \mathbb{R}^{2}$: point in the points in the diagrams are determined by

The persistence algorithm : matrix version

Input : $\emptyset=K^{0} \subset K^{1} \subset \cdots \subset K^{m}=K$ a d-dimensional filtration of a simplicial complex K s. t. $K^{i+1}=K^{i} \cup \sigma^{i+1}$ where σ^{i+1} is a simplex of K.
The matrix of the boundary operator :

$$
\left(\begin{array}{lllllll}
0 & 0 & 1 & 0 & 0 & 1 & 0 \tag{j}\\
0 & 0 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

- $M=\left(m_{i j}\right)_{i, j=1, \cdots, m}$ with coefficient in $\mathbb{Z} / 2$ defined by

$$
m_{i j}=1 \text { if } \sigma^{i} \text { is a face of } \sigma^{j} \text { and } m_{i j}=0 \text { otherwise }
$$

- For any column $C_{j}, l(j)$ is defined by

$$
(i=l(j)) \Leftrightarrow\left(m_{i j}=1 \text { and } m_{i^{\prime} j}=0 \quad \forall i^{\prime}>i\right)
$$

The persistence algorithm : matrix version

Input : $\emptyset=K^{0} \subset K^{1} \subset \cdots \subset K^{m}=K$ a d-dimensional filtration of a simplicial complex K s. t. $K^{i+1}=K^{i} \cup \sigma^{i+1}$ where σ^{i+1} is a simplex of K.

Compute the matrix of the boundary operator M
For $j=0$ to m
While (there exists $j^{\prime}<j$ such that $l\left(j^{\prime}\right)==l(j)$)

$$
C_{j}=C_{j}+C_{j^{\prime}} \bmod (2) ;
$$

End while
End for
Output the pairs $(l(j), j)$;

Remark : The worst case complexity of the algorithm is $O\left(m^{3}\right)$ but much lower in most practical cases.

The persistence algorithm : matrix version

A simple example :

Paires : $(2,3)(4,5)(6,7)$

Persistent homology with the GUDHI library

गढढी \mathfrak{J} DHI Geometry Understanding in Higher Dimensions

http ://gudhi.gforge.inria.fr/

GUDHI :

- a C++/Python open source software library for TDA,
- a developers team, an editorial board, open to external contributions,
- provides state-of-the-art TDA data structures and algorithms : design of filtrations, computation of pre-defined filtrations, persistence diagrams,...
- algorithms and tools for TDA and ML.

If there is some time left...

Persistence from an algebraic perspective

Definition : A persistence module \mathbb{V} is an indexed family of vector spaces ($V_{a} \mid a \in$ \mathbf{R}) and a doubly-indexed family of linear maps $\left(v_{a}^{b}: V_{a} \rightarrow V_{b} \mid a \leq b\right)$ which satisfy the composition law $v_{b}^{c} \circ v_{a}^{b}=v_{a}^{c}$ whenever $a \leq b \leq c$, and where v_{a}^{a} is the identity map on V_{a}.

Examples:

— Let \mathbb{S} be a filtered simplicial complex. If $V_{a}=\mathrm{H}\left(\mathbb{S}_{a}\right)$ and $v_{a}^{b}: \mathrm{H}\left(\mathbb{S}_{a}\right) \rightarrow \mathrm{H}\left(\mathbb{S}_{b}\right)$ is the linear map induced by the inclusion $\mathbb{S}_{a} \hookrightarrow \mathbb{S}_{b}$ then $\left(\mathrm{H}\left(\mathbb{S}_{a}\right) \mid a \in \mathbf{R}\right)$ is a persistence module.

- Given a metric space $\left(\mathbb{X}, d_{\mathbb{X}}\right), \mathrm{H}(\operatorname{Rips}(\mathbb{X}))$ is a persistence module.
- If $f: X \rightarrow \mathbf{R}$ is a function, then the filtration defined by the sublevel sets of $f, \mathbb{F}_{a}=f^{-1}((-\infty, a])$, induces a persistence module at homology level.

Persistence from an algebraic perspective

Definition : A persistence module \mathbb{V} is an indexed family of vector spaces ($V_{a} \mid a \in$ $\mathbf{R})$ and a doubly-indexed family of linear maps $\left(v_{a}^{b}: V_{a} \rightarrow V_{b} \mid a \leq b\right)$ which satisfy the composition law $v_{b}^{c} \circ v_{a}^{b}=v_{a}^{c}$ whenever $a \leq b \leq c$, and where v_{a}^{a} is the identity map on V_{a}.

Definition : A persistence module \mathbb{V} is q -tame if for any $a<b, v_{a}^{b}$ has a finite rank.

Theorem :[C., Cohen-Steiner, Glisse, Guibas, Oudot - SoCG'09], [C., de Silva, Glisse, Oudot 12]
q -tame persistence modules have well-defined persistence diagrams.

Persistence from an algebraic perspective

Definition : A persistence module \mathbb{V} is an indexed family of vector spaces ($V_{a} \mid a \in$ \mathbf{R}) and a doubly-indexed family of linear maps $\left(v_{a}^{b}: V_{a} \rightarrow V_{b} \mid a \leq b\right)$ which satisfy the composition law $v_{b}^{c} \circ v_{a}^{b}=v_{a}^{c}$ whenever $a \leq b \leq c$, and where v_{a}^{a} is the identity map on V_{a}.

Definition : A persistence module \mathbb{V} is q -tame if for any $a<b, v_{a}^{b}$ has a finite rank.

Theorem :[C., Cohen-Steiner, Glisse, Guibas, Oudot - SoCG'09], [C., de Silva, Glisse, Oudot 12]
q-tame persistence modules have well-defined persistence diagrams.

Example : Let \mathbb{X} be a precompact metric space. Then $\mathrm{H}(\operatorname{Rips}(\mathbb{X}))$ is q-tame.

Recall that a metric space (\mathbb{X}, ρ) is precompact if for any $\epsilon>0$ there exists a finite subset $F_{\epsilon} \subset \mathbb{X}$ such that $d_{H}\left(\mathbb{X}, F_{\epsilon}\right)<\epsilon$ (i.e. $\forall x \in X, \exists p \in F_{\epsilon}$ s.t. $\left.\rho(x, p)<\epsilon\right)$.

Persistence from an algebraic perspective

Definition : A persistence module \mathbb{V} is an indexed family of vector spaces ($V_{a} \mid a \in$ $\mathbf{R})$ and a doubly-indexed family of linear maps $\left(v_{a}^{b}: V_{a} \rightarrow V_{b} \mid a \leq b\right)$ which satisfy the composition law $v_{b}^{c} \circ v_{a}^{b}=v_{a}^{c}$ whenever $a \leq b \leq c$, and where v_{a}^{a} is the identity map on V_{a}.

A homomorphism of degree ϵ between two persistence modules \mathbb{U} and \mathbb{V} is a collection Φ of linear maps

$$
\left(\phi_{a}: U_{a} \rightarrow V_{a+\epsilon} \mid a \in \mathbf{R}\right)
$$

such that $v_{a+\epsilon}^{b+\epsilon} \circ \phi_{a}=\phi_{b} \circ u_{a}^{b}$ for all $a \leq b$.
An ε-interleaving between \mathbb{U} and \mathbb{V} is specified by two homomorphisms of degree $\epsilon \Phi: \mathbb{U} \rightarrow \mathbb{V}$ and $\Psi: \mathbb{V} \rightarrow \mathbb{U}$ s.t. $\Phi \circ \Psi$ and $\Psi \circ \Phi$ are the "shifts" of degree 2ϵ between \mathbb{U} and \mathbb{V}.

Persistence from an algebraic perspective

Definition : A persistence module \mathbb{V} is an indexed family of vector spaces ($V_{a} \mid a \in$ $\mathbf{R})$ and a doubly-indexed family of linear maps $\left(v_{a}^{b}: V_{a} \rightarrow V_{b} \mid a \leq b\right)$ which satisfy the composition law $v_{b}^{c} \circ v_{a}^{b}=v_{a}^{c}$ whenever $a \leq b \leq c$, and where v_{a}^{a} is the identity map on V_{a}.

Stability Thm [C., Cohen-Steiner, Glisse, Guibas, Oudot - SoCG '09], [C., de Silva, Glisse

 Oudot 12]If \mathbb{U} and \mathbb{V} are q -tame and ϵ-interleaved for some $\epsilon \geq 0$ then

$$
d_{B}(\operatorname{dgm}(\mathbb{U}), \operatorname{dgm}(\mathbb{V})) \leq \epsilon
$$

Persistence from an algebraic perspective

Definition : A persistence module \mathbb{V} is an indexed family of vector spaces ($V_{a} \mid a \in$ \mathbf{R}) and a doubly-indexed family of linear maps $\left(v_{a}^{b}: V_{a} \rightarrow V_{b} \mid a \leq b\right)$ which satisfy the composition law $v_{b}^{c} \circ v_{a}^{b}=v_{a}^{c}$ whenever $a \leq b \leq c$, and where v_{a}^{a} is the identity map on V_{a}.

Stability Thm [C., Cohen-Steiner, Glisse, Guibas, Oudot - SoCG '09], [C., de Silva, Glisse

 Oudot 12]If \mathbb{U} and \mathbb{V} are q-tame and ϵ-interleaved for some $\epsilon \geq 0$ then

$$
d_{B}(\operatorname{dgm}(\mathbb{U}), \operatorname{dgm}(\mathbb{V})) \leq \epsilon
$$

Exercise : Show the stability theorem for (tame) functions: let \mathbb{X} be a topological space and let $f, g: \mathbb{X} \rightarrow \mathbb{R}$ be two tame functions. Then

$$
\mathrm{d}_{\mathrm{B}}\left(\mathrm{D}_{f}, \mathrm{D}_{g}\right) \leq\|f-g\|_{\infty}
$$

Persistence from an algebraic perspective

Definition : A persistence module \mathbb{V} is an indexed family of vector spaces ($V_{a} \mid a \in$ \mathbf{R}) and a doubly-indexed family of linear maps $\left(v_{a}^{b}: V_{a} \rightarrow V_{b} \mid a \leq b\right)$ which satisfy the composition law $v_{b}^{c} \circ v_{a}^{b}=v_{a}^{c}$ whenever $a \leq b \leq c$, and where v_{a}^{a} is the identity map on V_{a}.

Stability Thm [C., Cohen-Steiner, Glisse, Guibas, Oudot - SoCG '09], [C., de Silva, Glisse

 Oudot 12]If \mathbb{U} and \mathbb{V} are q -tame and ϵ-interleaved for some $\epsilon \geq 0$ then

$$
d_{B}(\operatorname{dgm}(\mathbb{U}), \operatorname{dgm}(\mathbb{V})) \leq \epsilon
$$

Strategy : build filtrations that induce q-tame homology persistence modules and that turn out to be ϵ-interleaved when the considered spaces/functions are $O(\epsilon)$-close.

A few applications of persistence

Persistence-based clustering

Combine a mode seeking approach with (0 -dim) persistence computation.

Input :

1. A finite set X of observations (point cloud with coordinates or pairwise distance matrix),
2. A real valued function f defined on the observations (e.g. density estimate).

Goal : Partition the data according to the basins of attraction of the peaks of f

Persistence-based clustering

Combine a mode seeking approach with (0 -dim) persistence computation.

1. Build a neighborhing graph G on top of X.
2. Compute the (0 -dim) persistence of f to identify prominent peaks \rightarrow number of clusters (union-find algorithm).

Persistence-based clustering

Combine a mode seeking approach with (0-dim) persistence computation.

1. Build a neighborhing graph G on top of X.
2. Compute the (0 -dim) persistence of f to identify prominent peaks \rightarrow number of clusters (union-find algorithm).

Persistence-based clustering

Combine a mode seeking approach with (0-dim) persistence computation.

1. Build a neighborhing graph G on top of X.
2. Compute the (0 -dim) persistence of f to identify prominent peaks \rightarrow number of clusters (union-find algorithm).

Persistence-based clustering

Combine a mode seeking approach with (0 -dim) persistence computation.

$$
\tau=0
$$

1. Build a neighborhing graph G on top of X.
2. Compute the (0-dim) persistence of f to identify prominent peaks \rightarrow number of clusters (union-find algorithm).
3. Chose a threshold $\tau>0$ and use the persistence algorithm to merge components with prominence less than τ.

Persistence-based clustering

Combine a mode seeking approach with (0 -dim) persistence computation.

$$
\tau=0
$$

Complexity of the algorithm : $\mathrm{O}(n \log n)$
Theoretical guarantees :

- Stability of the number of clusters (w.r.t. perturbations of X and f).
- Partial stability of clusters : well identified stable parts in each cluster.

Application to non-rigid shape segmentation

[Skraba, Ovsjanikov, C.,Guibas, NORDIA 10]

Persistence diagram for david1 with $\mathrm{f}=\mathrm{HKS}(0.1)$

X : a 3D shape

$f=$ HKS function on X
Problem : some part of clusters are unstable \rightarrow dirty segments

Application to non-rigid shape segmentation

[Skraba, Ovsjanikov, C.,Guibas, NORDIA 10]

Problem : some part of clusters are unstable \rightarrow dirty segments

Idea :

- Run the persistence based algorithm several times on random perturbations of f (size bounded by the "persistence" gap).
- Partial stability of clusters allows to establish correspondences between clusters across the different runs \rightarrow for any $x \in X$, a vector giving the probability for x to belong to each cluster.

Application to non-rigid shape segmentation

Persistence diagram for cat1 with $\mathrm{f}=\operatorname{HKS}(0.1)$

Topology-based unsupervised classification and anomaly detection on cytometry data for medical diagnosis

An innovative start-up specialized in biological diagnosis from cytometry data.

Objective : unsupervised learning in large point clouds (several millions) in medium/high dimensions ($\approx 4 \rightarrow 80$)

Applications : medical diagnosis from blood samples (1 point $=1$ blood cell)
Methodology : TDA based approaches, combined with dim. reduction methods to identify relevant patterns and subsamples.

The problem of representation of persistence

 classical ML algorithms (the space of PD is highly non linear)
Not always clear which part of the diagrams carries the relevant information.

Representations of persistence

A zoo of representations of persistence

(non exhaustive list - see also Gudhi representations)

- Collections of 1D functions
\rightarrow landscapes [Bubenik 2012]
\rightarrow Betti curves [Umeda 2017]
- discrete measures : (interesting statistical properties [Chazal, Divol 2018])
\rightarrow persistence images [Adams et al 2017]
\rightarrow convolution with Gaussian kernel [Reininghaus et al. 2015] [Chepushtanova et
al. 2015] [Kusano Fukumisu Hiraoka 2016-17] [Le Yamada 2018]
\rightarrow sliced on lines [Carrière Oudot Cuturi 2017]
- finite metric spaces [Carrière Oudot Ovsjanikov 2015]
- polynomial roots or evaluations [Di Fabio Ferri 2015] [Kališnik 2016]

Persistence images

For $K: \mathbb{R}^{2} \rightarrow \mathbb{R}$ a kernel and H a bandwidth matrix (e.g. a symmetric positive definite matrix), pose for $u \in \mathbb{R}^{2}, K_{H}(u)=|H|^{-1 / 2} K\left(H^{-1 / 2} \cdot u\right)$

For $D=\sum_{i} \delta_{p_{i}}$ a diagram, $K: \mathbb{R}^{2} \rightarrow \mathbb{R}$ a kernel, H a bandwidth matrix and $w: \mathbb{R}^{2} \rightarrow \mathbb{R}_{+}$a weight function, one defines the persistence surface of D with kernel K and weight function w by :

$$
\forall u \in \mathbb{R}^{2}, \rho(D)(u)=\sum_{i} w\left(p_{i}\right) K_{H}\left(u-p_{i}\right)=D\left(w K_{H}(u-\cdot)\right)
$$

Persistence diagrams as discrete measures

Motivations :

- The space of measures is much nicer that the space of P. D.!
- In the general algebraic persistence theory, persistence diagrams naturally appears as discrete measures in the plane.
- Many persistence representations can be expressed as

$$
D(f)=\sum_{p \in D} f(p)=\int f d D
$$

for well-chosen functions $f: \mathbb{R}^{2} \rightarrow \mathcal{H}$.

Persistence diagrams as discrete measures

Benefits :

- Interesting statistical properties
- Data-driven selection of well-adapted representations (supervised and unsupervised, coming with guarantees)
- Optimisation of persistence-based functions

Many tools available and implemented in the GUDHI library

Filtrations revisited

Let $n>0$ be an integer,
\mathcal{F}_{n} : the collection of non-empty subsets of $\{1, \ldots, n\}$,
M : a real analytic compact d-dim. connected manifold (poss. with boundary).
Filtering function :

$$
\varphi=(\varphi[J])_{J \in \mathcal{F}_{n}}: M^{n} \rightarrow \mathbb{R}^{\left|\mathcal{F}_{n}\right|}
$$

satisfiying the following conditions:
(K2) Invariance by permutation: For $J \in \mathcal{F}_{n}$ and for $\left(x_{1}, \ldots, x_{n}\right) \in M^{n}$, if τ is a permutation of the entries having support included in J, then $\varphi[J]\left(x_{\tau(1)}, \ldots, x_{\tau(n)}\right)=\varphi[J]\left(x_{1}, \ldots, x_{n}\right)$.
(K3) Monotony : For $J \subset J^{\prime} \in \mathcal{F}_{n}, \varphi[J] \leq \varphi\left[J^{\prime}\right]$.
Given $x=\left(x_{1}, \cdots, x_{n}\right), \varphi(x)$ induces an order on the faces of the simplex with n vertices that is a filtration $\mathcal{K}(x)$:

$$
\forall J \in \mathcal{F}_{n}, J \in \mathcal{K}(x, r) \Longleftrightarrow \varphi[J](x) \leq r .
$$

Filtrations revisited

Not: for $x=\left(x_{1}, \ldots, x_{n}\right) \in M^{n}$ and for J a simplex, $x(J):=\left(x_{j}\right)_{j \in J}$
(K1) Absence of interaction : For $J \in \mathcal{F}_{n}, \varphi[J](x)$ only depends on $x(J)$.
(K2) Invariance by permutation : For $J \in \mathcal{F}_{n}$ and for $\left(x_{1}, \ldots, x_{n}\right) \in M^{n}$, if τ is a permutation of the entries having support included in J, then $\varphi[J]\left(x_{\tau(1)}, \ldots, x_{\tau(n)}\right)=\varphi[J]\left(x_{1}, \ldots, x_{n}\right)$.
(K3) Monotony : For $J \subset J^{\prime} \in \mathcal{F}_{n}, \varphi[J] \leq \varphi\left[J^{\prime}\right]$.
(K4) Compatibility : For a simplex $J \in \mathcal{F}_{n}$ and for $j \in J$, if $\varphi[J]\left(x_{1}, \ldots, x_{n}\right)$ is not a function of x_{j} on some open set U of M^{n}, then $\varphi[J] \equiv$ $\varphi[J \backslash\{j\}]$ on U.
(K5) Smoothness : The function φ is subanalytic and the gradient of each of its entries (which is defined a.s.e.) is non vanishing a.s.e..

Filtrations revisited

Let $n>0$ be an integer,
\mathcal{F}_{n} : the collection of non-empty subsets of $\{1, \ldots, n\}$,
M : a real analytic compact d-dim. connected manifold (poss. with boundary).
Filtering function :

$$
\varphi=(\varphi[J])_{J \in \mathcal{F}_{n}}: M^{n} \rightarrow \mathbb{R}^{\left|\mathcal{F}_{n}\right|}
$$

satisfiying the following conditions:
(K2) Invariance by permutation: For $J \in \mathcal{F}_{n}$ and for $\left(x_{1}, \ldots, x_{n}\right) \in M^{n}$, if τ is a permutation of the entries having support included in J, then $\varphi[J]\left(x_{\tau(1)}, \ldots, x_{\tau(n)}\right)=\varphi[J]\left(x_{1}, \ldots, x_{n}\right)$.
(K3) Monotony : For $J \subset J^{\prime} \in \mathcal{F}_{n}, \varphi[J] \leq \varphi\left[J^{\prime}\right]$.
Given $x=\left(x_{1}, \cdots, x_{n}\right), \varphi(x)$ induces an order on the faces of the simplex with n vertices that is a filtration $\mathcal{K}(x)$:

$$
\forall J \in \mathcal{F}_{n}, J \in \mathcal{K}(x, r) \Longleftrightarrow \varphi[J](x) \leq r .
$$

Filtrations revisited

Not: for $x=\left(x_{1}, \ldots, x_{n}\right) \in M^{n}$ and for J a simplex, $x(J):=\left(x_{j}\right)_{j \in J}$
(K1) Absence of interaction : For $J \in \mathcal{F}_{n}, \varphi[J](x)$ only depends on $x(J)$.
(K2) Invariance by permutation : For $J \in \mathcal{F}_{n}$ and for $\left(x_{1}, \ldots, x_{n}\right) \in M^{n}$, if τ is a permutation of the entries having support included in J, then $\varphi[J]\left(x_{\tau(1)}, \ldots, x_{\tau(n)}\right)=\varphi[J]\left(x_{1}, \ldots, x_{n}\right)$.
(K3) Monotony : For $J \subset J^{\prime} \in \mathcal{F}_{n}, \varphi[J] \leq \varphi\left[J^{\prime}\right]$.
(K4) Compatibility : For a simplex $J \in \mathcal{F}_{n}$ and for $j \in J$, if $\varphi[J]\left(x_{1}, \ldots, x_{n}\right)$ is not a function of x_{j} on some open set U of M^{n}, then $\varphi[J] \equiv$ $\varphi[J \backslash\{j\}]$ on U.
(K5) Smoothness : The function φ is subanalytic and the gradient of each of its entries (which is defined a.s.e.) is non vanishing a.s.e..

The example of the Vietoris-Rips filtration

$$
\varphi[J](x)=\max _{i, j \in J} d\left(x_{i}, x_{j}\right)
$$

(K1) Absence of interaction : For $J \in \mathcal{F}_{n}, \varphi[J](x)$ only depends on $x(J)$.
(K2) Invariance by permutation : For $J \in \mathcal{F}_{n}$ and for $\left(x_{1}, \ldots, x_{n}\right) \in M^{n}$, if τ is a permutation of the entries having support included in J, then $\varphi[J]\left(x_{\tau(1)}, \ldots, x_{\tau(n)}\right)=\varphi[J]\left(x_{1}, \ldots, x_{n}\right)$.
(K3) Monotony : For $J \subset J^{\prime} \in \mathcal{F}_{n}, \varphi[J] \leq \varphi\left[J^{\prime}\right]$.
(K4) Compatibility : For a simplex $J \in \mathcal{F}_{n}$ and for $j \in J$, if $\varphi[J]\left(x_{1}, \ldots, x_{n}\right)$ is not a function of x_{j} on some open set U of M^{n}, then $\varphi[J] \equiv$ $\varphi[J \backslash\{j\}]$ on U.
(K5') Smoothness : The function φ is subanalytic and the gradient of each of its entries J of size larger than 1 is non vanishing a.e. and for $J=\{j\}$, $\varphi[\{j\}] \equiv 0$.

The example of the Vietoris-Rips filtration

$$
\varphi[J](x)=\max _{i, j \in J} d\left(x_{i}, x_{j}\right)
$$

(K1) Absence of interaction : For $J \in \mathcal{F}_{n}, \varphi[J](x)$ only depends on $x(J)$
(K2) Invariance by permutation : For $J \in \mathcal{F}_{n}$ and for $\left(x_{1}, \ldots, x_{n}\right) \in M^{n}$, if τ is a permutation of the entries having support included in J, then $\varphi[J]\left(x_{\tau(1)}, \ldots, x_{\tau(n)}\right)=\varphi[J]\left(x_{1}, \ldots, x_{n}\right)$.
(K3) Monotony : For $J \subset J^{\prime} \in \mathcal{F}_{n}, \varphi[J] \leq \varphi\left[J^{\prime}\right]$.
(K4) Compatibility : For a simplex $J \in \mathcal{F}_{n}$ and for $j \in J$, if $\varphi[J]\left(x_{1}, \ldots, x_{n}\right)$ is not a function of x_{j} on some open set U of M^{n}, then $\varphi[J] \equiv$ $\varphi[J \backslash\{j\}]$ on U.
(K5') Smoothness : The function φ is subanalytic and the gradient of each of its entries J of size larger than 1 is non vanishing a.e. and for $J=\{j\}$, $\varphi[\{j\}] \equiv 0$.

The example of the Vietoris-Rips filtration

$$
\varphi[J](x)=\max _{i, j \in J} d\left(x_{i}, x_{j}\right)
$$

(K1) Absence of interaction: For $J \in \mathcal{F}_{n}, \varphi[J](x)$ only depends on $x(J)$
(K2) Invariance by permutation : For $J \in \mathcal{F}_{n}$ and for $\left(x_{1}, \ldots, x_{n}\right) \in M^{n}$, if τ is a permutation of the entries having support included in J, then $\varphi[J]\left(x_{\tau(1)}, \ldots, x_{\tau(n)}\right)=\varphi[J]\left(x_{1}, \ldots, x_{n}\right)$.
(K3) Monotony : For $J \subset J^{\prime} \in \mathcal{F}_{n}, \varphi[J] \leq \varphi\left[J^{\prime}\right]$.
(K4) Compatibility : For a simplex $J \in \mathcal{F}_{n}$ and for $j \in J$, if $\varphi[J]\left(x_{1}, \ldots, x_{n}\right)$ is not a function of x_{j} on some open set U of M^{n}, then $\varphi[J] \equiv$ $\varphi[J \backslash\{j\}]$ on U.
(K5') Smoothness : The function φ is subanalytic and the gradient of each of its entries J of size larger than 1 is non vanishing a.e. and for $J=\{j\}$, $\varphi[\{j\}] \equiv 0$.

The example of the Vietoris-Rips filtration

$$
\varphi[J](x)=\max _{i, j \in J} d\left(x_{i}, x_{j}\right)
$$

(K1) Absence of interaction: For $J \in \mathcal{F}_{n}, \varphi[J](x)$ only depends on $x(J)$
(K2) Invariance by permutation : For $J \in \mathcal{F}_{n}$ and for $\left(x_{1}, \ldots, x_{n}\right) \in M^{n}$, if τ is a permutation of the entries having support included in J, then $\varphi[J]\left(x_{\tau(1)}, \ldots, x_{\tau(n)}\right)=\varphi[J]\left(x_{1}, \ldots, x_{n}\right)$.
(K3) Monotony : For $J \subset J^{\prime} \in \mathcal{F}_{n}, \varphi[J] \leq \varphi\left[J^{\prime}\right]$.
(K4) Compatibility : For a simplex $J \in \mathcal{F}_{n}$ and for $j \in J$, if $\varphi[J]\left(x_{1}, \ldots, x_{n}\right)$ is not a function of x_{j} on some open set U of M^{n}, then $\varphi[J] \equiv$ $\varphi[J \backslash\{j\}]$ on U.
(K5') Smoothness : The function φ is subanalytic and the gradient of each of its entries J of size larger than 1 is non vanishing a.e. and for $J=\{j\}$, $\varphi[\{j\}] \equiv 0$.

The example of the Vietoris-Rips filtration

$$
\varphi[J](x)=\max _{i, j \in J} d\left(x_{i}, x_{j}\right)
$$

(K1) Absence of interaction: For $J \in \mathcal{F}_{n}, \varphi[J](x)$ only depends on $x(J)$
(K2) Invariance by permutation : For $J \in \mathcal{F}_{n}$ and for $\left(x_{1}, \ldots, x_{n}\right) \in M^{n}$, if τ is a permutation of the entries having support included in J, then $\varphi[J]\left(x_{\tau(1)}, \ldots, x_{\tau(n)}\right)=\varphi[J]\left(x_{1}, \ldots, x_{n}\right)$.
(K3) Monotony : For $J \subset J^{\prime} \in \mathcal{F}_{n}, \varphi[J] \leq \varphi\left[J^{\prime}\right]$.
(K4) Compatibility : For a simplex $J \in \mathcal{F}_{n}$ and for $j \in J$, if $\varphi[J]\left(x_{1}, \ldots, x_{n}\right)$ is not a function of x_{j} on some open set U of M^{n}, then $\varphi[J] \equiv$ $\varphi[J \backslash\{j\}]$ on U.
(K5') Smoothness : The function φ is subanalytic and the gradient of each of its entries J of size larger than 1 is non vanishing a.e. and for $J=\{j\}$, $\varphi[\{j\}] \equiv 0$.

The example of the Vietoris-Rips filtration

$$
\varphi[J](x)=\max _{i, j \in J} d\left(x_{i}, x_{j}\right)
$$

(K1) Absence of interaction: For $J \in \mathcal{F}_{n}, \varphi[J](x)$ only depends on $x(J)$
(K2) Invariance by permutation : For $J \in \mathcal{F}_{n}$ and for $\left(x_{1}, \ldots, x_{n}\right) \in M^{n}$, if τ is a permutation of the entries having support included in J, then $\varphi[J]\left(x_{\tau(1)}, \ldots, x_{\tau(n)}\right)=\varphi[J]\left(x_{1}, \ldots, x_{n}\right)$.
(K3) Monotony : For $J \subset J^{\prime} \in \mathcal{F}_{n}, \varphi[J] \leq \varphi\left[J^{\prime}\right]$.
(K4) Compatibility : For a simplex $J \in \mathcal{F}_{n}$ and for $j \in J$, if $\varphi[J]\left(x_{1}, \ldots, x_{n}\right)$ is not a function of x_{j} on some open set U of M^{n}, then $\varphi[J] \equiv$ $\varphi[J \backslash\{j\}]$ on U.
(K5') Smoothness : The function φ is subanalytic and the gradient of each of its entries J of size larger than 1 is non vanishing a.e. and for $J=\{j\}$, $\varphi[\{j\}] \equiv 0$.

The density of expected persistence diagrams

Theorem : Fix $n \geq 1$. Assume that :

- M is a real analytic compact d-dimensional connected submanifold possibly with boundary,
- \mathbb{X} is a random variable on M^{n} having a density with respect to the Haussdorf measure $\mathcal{H}_{d n}$,
- \mathcal{K} satisfies the assumptions (K1)-(K5).

Then, for $s \geq 0, E\left[D_{s}[\mathcal{K}(\mathbb{X})]\right]$ has a density with respect to the Lebesgue measure on the half plane $\Delta=\left\{(b, d) \in \mathbb{R}^{2}: b \leq d\right\}$.

The density of expected persistence diagrams

Theorem : Fix $n \geq 1$. Assume that:

- M is a real analytic compact d-dimensional connected riemannian manifold possibly with boundary,
- \mathbb{X} is a random variable on M^{n} having a density with respect to the Haussdorf measure $\mathcal{H}_{d n}$,
- \mathcal{K} satisfies the assumptions (K1)-(K4) and (K5').

Then, for $s \geq 1, E\left[D_{s}[\mathcal{K}(\mathbb{X})]\right]$ has a density with respect to the Lebesgue measure on Δ. Moreover, $E\left[D_{0}[\mathcal{K}(\mathbb{X})]\right]$ has a density with respect to the Lebesgue measure on the vertical line $\{0\} \times[0, \infty)$.

The density of expected persistence diagrams

Theorem : Fix $n \geq 1$. Assume that:

- M is a real analytic compact d-dimensional connected riemannian manifold possibly with boundary,
- \mathbb{X} is a random variable on M^{n} having a density with respect to the Haussdorf measure $\mathcal{H}_{d n}$,
- \mathcal{K} satisfies the assumptions (K1)-(K4) and (K5').

Then, for $s \geq 1, E\left[D_{s}[\mathcal{K}(\mathbb{X})]\right]$ has a density with respect to the Lebesgue measure on Δ. Moreover, $E\left[D_{0}[\mathcal{K}(\mathbb{X})]\right]$ has a density with respect to the Lebesgue measure on the vertical line $\{0\} \times[0, \infty)$.

Theorem [smoothness] : Under the assumption of previous theorem, if moreover $\mathbb{X} \in M^{n}$ has a density of class C^{k} with respect to $\mathcal{H}_{n d}$. Then, for $s \geq 0$, the density of $E\left[D_{s}[\mathcal{K}(\mathbb{X})]\right]$ is of class C^{k}.

Sketch of proof

1. There exists a partition of the complement of a (subanalytic) set of measure 0 in M^{n} by open sets V_{1}, \cdots, V_{R} such that :

- the order of the simplices of $\mathcal{K}(x)$ is constant on each V_{r},
- for any $r=1, \cdots, R$, and any $x \in V_{r}$,

$$
D_{s}[\mathcal{K}(x)]=\sum_{i=1}^{N_{r}} \delta_{\mathbf{r}_{i}}
$$

with $\mathbf{r}_{i}=\left(\varphi\left[J_{i_{1}}\right](x), \varphi\left[J_{i_{2}}\right](x)\right)$ where $N_{r}, J_{i_{1}}, J_{i_{2}}$ only depends on V_{r}.

- $J_{i_{1}}, J_{i_{2}}$ can be chosen so that the differential of

$$
\Phi_{i r}: x \in V_{r} \rightarrow \mathbf{r}_{i}=\left(\varphi\left[J_{i_{1}}\right](x), \varphi\left[J_{i_{2}}\right](x)\right)
$$

has maximal rank (2).

Sketch of proof

2.The expected diagram can be written as

$$
\begin{aligned}
E\left[D_{s}[\mathcal{K}(\mathbb{X})]\right] & =\sum_{r=1}^{R} E\left[\mathbb{1}\left\{\mathbb{X} \in V_{r}\right\} D_{s}[\mathcal{K}(\mathbb{X})]\right]=\sum_{r=1}^{R} E\left[\mathbb{1}\left\{\mathbb{X} \in V_{r}\right\} \sum_{i=1}^{N_{r}} \delta_{\mathbf{r}_{i}}\right] \\
& =\sum_{r=1}^{R} \sum_{i=1}^{N_{r}} E\left[\mathbb{1}\left\{\mathbb{X} \in V_{r}\right\} \delta_{\mathbf{r}_{i}}\right]
\end{aligned}
$$

Sketch of proof

2.The expected diagram can be written as

$$
\begin{aligned}
E\left[D_{s}[\mathcal{K}(\mathbb{X})]\right] & =\sum_{r=1}^{R} E\left[\mathbb{1}\left\{\mathbb{X} \in V_{r}\right\} D_{s}[\mathcal{K}(\mathbb{X})]\right]=\sum_{r=1}^{R} E\left[\mathbb{1}\left\{\mathbb{X} \in V_{r}\right\} \sum_{i=1}^{N_{r}} \delta_{\mathbf{r}_{i}}\right] \\
& =\sum_{r=1}^{R} \sum_{i=1}^{N_{r}} E\left[\mathbb{1}\left\{\mathbb{X} \in V_{r}\right\} \delta_{\mathbf{r}_{i}}\right)_{\mu_{i r}}
\end{aligned}
$$

3. Use the co-area formula :

$$
\begin{aligned}
\rightarrow \mu_{i r}(B) & =P\left(\Phi_{i r}(\mathbb{X}) \in B, \mathbb{X} \in V_{r}\right) \\
& =\int_{V_{r}} \mathbb{1}\left\{\Phi_{i r}(x) \in B\right\} \kappa(x) d \mathcal{H}_{n d}(x) \\
& =\int_{u \in B} \int_{x \in \Phi_{i r}^{-1}(u)}\left(J \Phi_{i r}(x)\right)^{-1} \kappa(x) d \mathcal{H}_{n d-2}(x) d u .
\end{aligned}
$$

Density of $\mu_{i r}$

The Hausdorff measure and the co-area formula

Definition : Let k be a non-negative number. For $A \subset \mathbb{R}^{D}$, and $\delta>0$, consider

$$
\mathcal{H}_{k}^{\delta}(A):=\inf \left\{\sum_{i} \operatorname{diam}\left(U_{i}\right)^{k}, A \subset \bigcup_{i} U_{i} \text { and } \operatorname{diam}\left(U_{i}\right)<\delta\right\} .
$$

The k-dimensional Haussdorf measure on \mathbb{R}^{D} of A is defined by $\mathcal{H}_{k}(A):=$ $\lim _{\delta \rightarrow 0} \mathcal{H}_{k}^{\delta}(A)$.
Theorem [Co-area formula] : Let M (resp. N) be a smooth Riemannian manifold of dimension m (resp n). Assume that $m \geq n$ and let $\Phi: M \rightarrow N$ be a differentiable map. Denote by $D \Phi$ the differential of Φ. The Jacobian of Φ is defined by $J \Phi=\sqrt{\operatorname{det}\left((D \Phi) \times(D \Phi)^{t}\right)}$. For $f: M \rightarrow N$ a positive measurable function, the following equality holds :

$$
\int_{M} f(x) J \Phi(x) d \mathcal{H}_{m}(x)=\int_{N}\left(\int_{x \in \Phi^{-1}(\{y\})} f(x) d \mathcal{H}_{m-n}(x)\right) d \mathcal{H}_{n}(y) .
$$

Persistence images

For $K: \mathbb{R}^{2} \rightarrow \mathbb{R}$ a kernel and H a bandwidth matrix (e.g. a symmetric positive definite matrix), pose for $u \in \mathbb{R}^{2}, K_{H}(z)=|H|^{-1 / 2} K\left(H^{-1 / 2} \cdot u\right)$

For $D=\sum_{i} \delta_{\mathbf{r}_{i}}$ a diagram, $K: \mathbb{R}^{2} \rightarrow \mathbb{R}$ a kernel, H a bandwidth matrix and $w: \mathbb{R}^{2} \rightarrow \mathbb{R}_{+}$a weight function, one defines the persistence surface of D with kernel K and weight function w by :

$$
\forall z \in \mathbb{R}^{2}, \rho(D)(u)=\sum_{i} w\left(\mathbf{r}_{i}\right) K_{H}\left(u-\mathbf{r}_{i}\right)=D\left(w K_{H}(u-\cdot)\right)
$$

Persistence images

For $K: \mathbb{R}^{2} \rightarrow \mathbb{R}$ a kernel and H a bandwidth matrix (e.g. a symmetric positive definite matrix), pose for $u \in \mathbb{R}^{2}, K_{H}(z)=|H|^{-1 / 2} K\left(H^{-1 / 2} \cdot u\right)$

For $D=\sum_{i} \delta_{\mathbf{r}_{i}}$ a diagram, $K: \mathbb{R}^{2} \rightarrow \mathbb{R}$ a kernel, H a bandwidth matrix and $w: \mathbb{R}^{2} \rightarrow \mathbb{R}_{+}$a weight function, one defines the persistence surface of D with kernel K and weight function w by :

$$
\forall z \in \mathbb{R}^{2}, \rho(D)(u)=\sum_{i} w\left(\mathbf{r}_{i}\right) K_{H}\left(u-\mathbf{r}_{i}\right)=D\left(w K_{H}(u-\cdot)\right)
$$

\Rightarrow persistence surfaces can be seen as kernel estimates of $E\left[D_{s}[\mathcal{K}(\mathbb{X})]\right]$.

Persistence images

The realization of 3 different processes

The overlay of 40 different persistence diagrams

The persistence images with weight function $w(\mathbf{r})=\left(r_{2}-r_{1}\right)^{3}$ and bandwith selected using cross-validation.

Thank you for your attention!

