Comprendre la structure topologique des données :
une introduction à l’homologie persistante.

Frédéric Chazal
DataShape team
Inria & Laboratoire de Mathématiques d’Orsay
Institut DATAIA Université Paris-Saclay
What is Topological Data Analysis (TDA)?

Modern data carry complex, but important, geometric/topological structure!
What is Topological Data Analysis (TDA)?

Topological Data Analysis (TDA) is a recent field whose aim is to:

- infer relevant topological and geometric features from complex data,
- take advantage of topological/geometric information for further Data Analysis, Machine Learning and AI tasks:
 - using topological features in ML pipelines,
 - taking advantage of topological information to improve ML pipelines.

Topological Data Analysis (TDA) is a recent field whose aim is to:
A classical TDA pipeline

1. Build a multiscale topol. structure on top of data: filtrations.
2. Compute multiscale topol. signatures: persistent homology
3. Take advantage of the signature for further Machine Learning and AI tasks: Statistical aspects and representations of persistence
Persistent homology
Starting with a few examples

A general mathematical framework to encode the evolution of the topology (homology) of families of nested spaces (filtrations).

- 90’s: size theory (P. Frosini et al), framed Morse complex and stability (S.A. Barannikov).
- Important mathematical and practical developments since the 2000’s.
Persistent homology for functions

- Tracking and encoding the evolution of the connected components (0-dimensional homology) of the sublevel sets of a function
- The family of sublevel sets of a function is an example of filtration.
Persistent homology for functions

- Tracking and encoding the evolution of the connected components (0-dimensional homology) of the sublevel sets of a function
- The family of sublevel sets of a function is an example of filtration.
Persistent homology for functions

- Tracking and encoding the evolution of the connected components (0-dimensional homology) of the sublevel sets of a function
- The family of sublevel sets of a function is an example of filtration.
Persistent homology for functions

- Tracking and encoding the evolution of the connected components (0-dimensional homology) of the sublevel sets of a function
- The family of sublevel sets of a function is an example of filtration.
Persistent homology for functions

• Tracking and encoding the evolution of the connected components (0-dimensional homology) of the sublevel sets of a function
• The family of sublevel sets of a function is an example of filtration.
Persistent homology for functions

- Tracking and encoding the evolution of the connected components (0-dimensional homology) of the sublevel sets of a function
- The family of sublevel sets of a function is an example of filtration.
Persistent homology for functions

- Tracking and encoding the evolution of the connected components (0-dimensional homology) of the sublevel sets of a function
- The family of sublevel sets of a function is an example of filtration.
Persistent homology for functions

• Tracking and encoding the evolution of the connected components (0-dimensional homology) of the sublevel sets of a function
• The family of sublevel sets of a function is an example of filtration.
• Finite set of intervals (barcode) encodes births/deaths of topological features.
Persistent homology for functions

- Tracking and encoding the evolution of the connected components (0-dimensional homology) of the sublevel sets of a function.
- The family of sublevel sets of a function is an example of filtration.
- Finite set of intervals (barcode) encodes births/deaths of topological features.
Persistent homology for functions

\[f_P : \mathbb{R}^2 \to \mathbb{R} \]

\[x \to \min_{p \in P} \|x - p\|_2 \]

barcode for holes (1-d homology)
Persistent homology for functions

\[f_P : \mathbb{R}^2 \to \mathbb{R} \]

\[x \to \min_{p \in P} \|x - p\|_2 \]

barcode for holes (1-d homology)
Persistent homology for functions

\[f_P : \mathbb{R}^2 \rightarrow \mathbb{R} \]

\[x \rightarrow \min_{p \in P} \| x - p \|_2 \]

barcode for holes (1-d homology)
Persistent homology for functions

\[f_P : \mathbb{R}^2 \rightarrow \mathbb{R} \]

\[
x \rightarrow \min_{p \in P} \|x - p\|_2
\]

barcode for holes (1-d homology)
Persistent homology for functions

$$f_P : \mathbb{R}^2 \to \mathbb{R}$$

$$x \to \min_{p \in P} \|x - p\|_2$$

barcode for holes (1-d homology)
Persistent homology for functions

\[f_P : \mathbb{R}^2 \rightarrow \mathbb{R} \]

\[x \rightarrow \min_{p \in P} \|x - p\|_2 \]

barcode for holes (1-d homology)
Tracking and encoding the evolution of the connected components (0-dimensional homology) and cycles (1-dimensional homology) of the sublevel sets.

Homology: an algebraic way to rigorously formalize the notion of k-dimensional cycles through a vector space (or a group), the homology group whose dimension is the number of "independent" cycles (the Betti number).
Stability properties

What if f is slightly perturbed?
The bottleneck distance between two diagrams D_1 and D_2 is

$$d_B(D_1, D_2) = \inf_{\gamma \in \Gamma} \sup_{p \in D_1} \|p - \gamma(p)\|_{\infty}$$

where Γ is the set of all the bijections between D_1 and D_2 and $\|p - q\|_{\infty} = \max(|x_p - x_q|, |y_p - y_q|)$.

The bottleneck distance between two diagrams D_1 and D_2 is

The bottleneck distance between two diagrams D_1 and D_2 is
Theorem (Stability):
For any tame functions $f, g : \mathbb{X} \to \mathbb{R}$, $d_B(D_f, D_g) \leq \|f - g\|_\infty$.

[Baranikov 94], [Cohen-Steiner, Edelsbrunner, Harer 05], [C., Cohen-Steiner, Glisse, Guibas, Oudot - SoCG 09], [C., de Silva, Glisse, Oudot 12]
Persistent homology for point clouds

- Filtrations allow to construct “shapes” representing the data in a multiscale way.
- **Persistent homology**: encode the evolution of the topology across the scales → multi-scale topological signatures.
- A general and well-studied mathematical framework.
Persistent homology for point clouds

• Filtrations allow to construct “shapes” representing the data in a multiscale way.
• **Persistent homology**: encode the evolution of the topology across the scales → multi-scale topological signatures.
• A general and well-studied mathematical framework.
• Filtrations allow to construct “shapes” representing the data in a multiscale way.
• **Persistent homology**: encode the evolution of the topology across the scales → multi-scale topological signatures.
• A general and well-studied mathematical framework.
Filtrations allow to construct “shapes” representing the data in a multiscale way.

Persistent homology: encode the evolution of the topology across the scales \rightarrow multi-scale topological signatures.

A general and well-studied mathematical framework.
Persistent homology for point clouds

- Filtrations allow to construct “shapes” representing the data in a multiscale way.
- **Persistent homology**: encode the evolution of the topology across the scales → multi-scale topological signatures.
- A general and well-studied mathematical framework.
Simplicial complexes, filtrations, homology and persistent homology
Given a set $P = \{p_0, \ldots, p_k\} \subset \mathbb{R}^d$ of $k+1$ affinely independent points, the k-dimensional simplex σ, or k-simplex for short, spanned by P is the set of convex combinations

$$\sum_{i=0}^{k} \lambda_i p_i, \quad \text{with} \quad \sum_{i=0}^{k} \lambda_i = 1 \quad \text{and} \quad \lambda_i \geq 0.$$

The points p_0, \ldots, p_k are called the vertices of σ.

0-simplex : vertex
1-simplex : edge
2-simplex : triangle
3-simplex : tetrahedron

etc...
A (finite) simplicial complex K in \mathbb{R}^d is a (finite) collection of simplices such that:

1. any face of a simplex of K is a simplex of K,
2. the intersection of any two simplices of K is either empty or a common face of both.

The underlying space of K, denoted by $|K| \subset \mathbb{R}^d$ is the union of the simplices of K.
Let P be a set. An abstract simplicial complex K with vertex set P is a set of finite subsets of P satisfying the two conditions:

1. The elements of P belong to K.
2. If $\tau \in K$ and $\sigma \subseteq \tau$, then $\sigma \in K$.

The elements of K are the simplices.

IMPORTANT

Simplicial complexes can be seen at the same time as geometric/topological spaces (good for top./geom. inference) and as combinatorial objects (abstract simplicial complexes, good for computations).
Homology in a nutshell (with coeff. in $\mathbb{Z}/2\mathbb{Z}$)

Formalize the notion of connected components, cycles/holes, voids... in a topological space (here we will restrict to simplicial complexes).

- 2 connected components (0-dim homology)
- 4 cycles (1-dim homology)
- 1 void (2-dim homology)
Homology in a nutshell (with coeff. in $\mathbb{Z}/2\mathbb{Z}$)

The space of k-chains:

Let K be a d-dimensional simplicial complex. Let $k \in \{0, 1, \cdots, d\}$ and \{\(\sigma_1, \cdots, \sigma_p\}\} be the set of k-simplices of K.

k-chain:

\[
c = \sum_{i=1}^{p} \varepsilon_i \sigma_i \quad \text{with} \quad \varepsilon_i \in \mathbb{Z}/2\mathbb{Z} = \{0, 1\}
\]

Sum of k-chains:

\[
c + c' = \sum_{i=1}^{p} (\varepsilon_i + \varepsilon'_i) \sigma_i \quad \text{and} \quad \lambda.c = \sum_{i=1}^{p} (\lambda \varepsilon'_i) \sigma_i
\]

where the sums $\varepsilon_i + \varepsilon'_i$ and the products $\lambda \varepsilon_i$ are modulo 2.
The boundary operator:

The boundary $\partial \sigma$ of a k-simplex σ is the sum of its $(k - 1)$-faces. This is a $(k - 1)$-chain.

$$\text{If } \sigma = [v_0, \cdots, v_k] \text{ then } \partial_k \sigma = \sum_{i=0}^{k} (-1)^i [v_0 \cdots \hat{v}_i \cdots v_k]$$

The boundary operator is the linear map defined by

$$\partial_k : C_k(K) \to C_{k-1}(K)$$

$$c \to \partial_k c = \sum_{\sigma \in c} \partial_k \sigma$$

$$\partial_k \partial_{k+1} := \partial_k \circ \partial_{k+1} = 0$$
Homology in a nutshell (with coeff. in $\mathbb{Z}/2\mathbb{Z}$)

Cycles and boundaries:

The chain complex associated to a complex K of dimension d

$$\emptyset \rightarrow C_d(K) \xrightarrow{\partial} C_{d-1}(K) \xrightarrow{\partial} \cdots C_{k+1}(K) \xrightarrow{\partial} C_k(K) \xrightarrow{\partial} \cdots C_1(K) \xrightarrow{\partial} C_0(K) \xrightarrow{\partial} \emptyset$$

k-cycles:

$$Z_k(K) := \ker(\partial : C_k \rightarrow C_{k-1}) = \{ c \in C_k : \partial c = \emptyset \}$$

k-boundaries:

$$B_k(K) := \text{im}(\partial : C_{k+1} \rightarrow C_k) = \{ c \in C_k : \exists c' \in C_{k+1}, c = \partial c' \}$$

$$B_k(K) \subset Z_k(K) \subset C_k(K)$$
Homology in a nutshell (with coeff. in \(\mathbb{Z}/2\mathbb{Z} \))

Homology groups and Betti numbers:

\[B_k(K) \subset Z_k(K) \subset C_k(K) \]

- The \(k^{th} \) homology group of \(K \) : \(H_k(K) = Z_k/B_k \)
- Tout each cycle \(c \in Z_k(K) \) corresponds its homology class \(c + B_k(K) = \{ c + b : b \in B_k(K) \} \).
- Two cycles \(c, c' \) are homologous if they are in the same homology class : \(\exists b \in B_k(K) \) s. t. \(b = c' - c (= c' + c) \).
- The \(k^{th} \) Betti number of \(K \) : \(\beta_k(K) = \dim(H_k(K)) \).

Remark : \(\beta_0(K) = \) number of connected components of \(K \).
Cycles and boundaries

Not a cycle

Non homologous 1-cycles

Two homologous 1-cycles

A 1-boundary
A filtered simplicial complex (or a filtration) K built on top of a set X is a family $(K_a | a \in T)$, $T \subseteq \mathbb{R}$, of subcomplexes of some fixed simplicial complex K with vertex set X s. t. $K_a \subseteq K_b$ for any $a \leq b$.

More generally, filtration = nested family of topological spaces indexed by T.

Persistent homology of a filtered simplicial complex encodes the evolution of the homology of the subcomplexes.
Filtrations of simplicial complexes

A filtered simplicial complex (or a filtration) K built on top of a set X is a family $(K_a | a \in T)$, $T \subseteq \mathbb{R}$, of subcomplexes of some fixed simplicial complex K with vertex set X s. t. $K_a \subseteq K_b$ for any $a \leq b$.

More generally, filtration = nested family of topological spaces indexed by T.

Many examples and ways to design filtrations depending on the application and targeted objectives: sublevel and upperlevel sets, Čech complex,...
Sublevel set filtration associated to a function

- f a real valued function defined on the vertices of K
- For $\sigma = [v_0, \cdots, v_k] \in K$, $f(\sigma) = \max_{i=0,\cdots,k} f(v_i)$
- The simplices of K are ordered according increasing f values (and dimension in case of equal values on different simplices).
Sublevel set filtration associated to a function

- f a real valued function defined on the vertices of K
- For $\sigma = [v_0, \cdots, v_k] \in K$, $f(\sigma) = \max_{i=0,\cdots,k} f(v_i)$
- The simplices of K are ordered according increasing f values (and dimension in case of equal values on different simplices).
Let V be a point cloud (in a metric space (X, d)).

The **Vietoris-Rips complex** $\text{Rips}(V)$ is the filtered simplicial complex indexed by \mathbb{R} whose vertex set is V and defined by :

$$\sigma = [p_0 p_1 \cdots p_k] \in \text{Rips}(V, \alpha) \text{ iff } \forall i, j \in \{0, \cdots, k\}, \ d(p_i, p_j) \leq \alpha$$

Easy to compute and fully determined by its 1-skeleton
Stability properties

"**Stability theorem**" : Close spaces/data sets have close persistence diagrams!

If X, Y are compact metric spaces, then

$$d_b(dgm(Rips(X)), dgm(Rips(Y))) \leq 2d_{GH}(X, Y).$$

Bottleneck distance

Gromov-Hausdorff distance

$$d_{GH}(X, Y) := \inf_{Z, \gamma_1, \gamma_2} d_H(\gamma_1(X), \gamma_2(X))$$

Z metric space, $\gamma_1 : X \to Z$ and $\gamma_2 : Y \to Z$ isometric embeddings.

Rem : This result also holds for other families of filtrations (particular case of a more general thm).

[C., de Silva, Oudot - Geom. Dedicata 2013].
Let $A, B \subset M$ be two compact subsets of a metric space (M, d)

$$d_H(A, B) = \max\{\sup_{b \in B} d(b, A), \sup_{a \in A} d(a, B)\}$$

where $d(b, A) = \sup_{a \in A} d(b, a)$.
An algorithm to compute Betti numbers

Input: A filtration of a simplicial complex $\emptyset = K^0 \subset K^1 \subset \cdots \subset K^m = K$, s. t. $K^{i+1} = K^i \cup \sigma^{i+1}$ where σ^{i+1} is a simplex of K.

Output: The Betti numbers $\beta_0, \beta_1, \cdots, \beta_d$ of K.

$$\beta_0 = \beta_1 = \cdots = \beta_d = 0;$$

for $i = 1$ to m

$$k = \dim \sigma^i - 1;$$

if σ^i is contained in a $(k + 1)$-cycle in K^i

then $\beta_{k+1} = \beta_{k+1} + 1;$

else $\beta_k = \beta_k - 1;$

end if;

end for;

output $(\beta_0, \beta_1, \cdots, \beta_d);$
An algorithm to compute Betti numbers

Input: A filtration of a simplicial complex $\emptyset = K^0 \subset K^1 \subset \cdots \subset K^m = K$, s. t. $K^{i+1} = K^i \cup \sigma^{i+1}$ where σ^{i+1} is a simplex of K.

Output: The Betti numbers $\beta_0, \beta_1, \cdots, \beta_d$ of K.

$$\beta_0 = \beta_1 = \cdots = \beta_d = 0;$$

for $i = 1$ to m

$k = \dim \sigma^i - 1$;

if σ^i is contained in a $(k+1)$-cycle in K^i

then $\beta_{k+1} = \beta_{k+1} + 1$;

else $\beta_k = \beta_k - 1$;

end if;

end for;

output $(\beta_0, \beta_1, \cdots, \beta_d)$;
An algorithm to compute Betti numbers

Input: A filtration of a simplicial complex $\emptyset = K^0 \subset K^1 \subset \cdots \subset K^m = K$, s. t. $K^{i+1} = K^i \cup \sigma^{i+1}$ where σ^{i+1} is a simplex of K.

Output: The Betti numbers $\beta_0, \beta_1, \cdots, \beta_d$ of K.

\[
\beta_0 = \beta_1 = \cdots = \beta_d = 0;
\]

for $i = 1$ to m

\[
k = \text{dim } \sigma^i - 1;
\]

if σ^i is contained in a $(k+1)$-cycle in K^i

\[
\text{then } \beta_{k+1} = \beta_{k+1} + 1;
\]

else $\beta_k = \beta_k - 1$;

end if;

end for;

output $(\beta_0, \beta_1, \cdots, \beta_d)$;

Remark: At the i^{th} step of the algorithm, the vector $(\beta_0, \cdots, \beta_d)$ stores the Betti numbers of K^i.
An algorithm to compute Betti numbers

Input: A filtration of a simplicial complex $\emptyset = K^0 \subset K^1 \subset \cdots \subset K^m = K$, s. t. $K^{i+1} = K^i \cup \sigma^i+1$ where σ^i+1 is a simplex of K.

Output: The Betti numbers $\beta_0, \beta_1, \cdots, \beta_d$ of K.

\[
\beta_0 = \beta_1 = \cdots = \beta_d = 0;
\]
for $i = 1$ to m
\[
k = \dim \sigma^i - 1;
\]
if σ^i is contained in a $(k + 1)$-cycle in K^i
\[
\text{then } \beta_{k+1} = \beta_{k+1} + 1;
\]
else $\beta_k = \beta_k - 1$;
end if;
end for;
output $(\beta_0, \beta_1, \cdots, \beta_d)$;

Definition: A $(k+1)$-simplex σ^i is **positive** if it is contained in a $(k+1)$-cycle in K^i. It is **negative** otherwise.

$$\beta_k(K) = \#(\text{positive simplices}) - \#(\text{negative simplices})$$
From homology to persistent homology

Input: A filtration of a simplicial complex \(\emptyset = K^0 \subset K^1 \subset \cdots \subset K^m = K \), s. t. \(K^{i+1} = K^i \cup \sigma^{i+1} \) where \(\sigma^{i+1} \) is a simplex of \(K \).

Output: The Betti numbers \(\beta_0, \beta_1, \cdots, \beta_d \) of \(K \).

\[
\beta_0 = \beta_1 = \cdots = \beta_d = 0;
\]
for \(i = 1 \) to \(m \)
\[
k = \dim \sigma^i - 1;
\]
if \(\sigma^i \) is contained in a \((k + 1)\)-cycle in \(K^i \)
then \(\beta_{k+1} = \beta_{k+1} + 1 \);
else \(\beta_k = \beta_k - 1 \);
end if;
end for;
output \((\beta_0, \beta_1, \cdots, \beta_d)\);

The algorithm can be easily adapted to keep track of an homology basis and pairs positive simplices (birth of a new homological class) to negative simplices (death of an existing homology class).
Persistent homology of filtered simplicial complexes

Let $K = (K_a \mid a \in \mathbb{R})$ be a finite filtered simplicial complex with N simplicies and let $K_{a_1} \subset K_{a_2} \subset \cdots \subset K_{a_N}$ be the discrete filtration induced by the entering times of the simplices: $K_{a_i} \setminus K_{a_{i-1}} = \sigma_{a_i}$.
Persistent homology of filtered simplicial complexes

Let $K = (K_a \mid a \in \mathbb{R})$ be a finite filtered simplicial complex with N simplicies and let $K_{a_1} \subset K_{a_2} \subset \cdots \subset K_{a_N}$ be the discrete filtration induced by the entering times of the simplices: $K_{a_i} \setminus K_{a_{i-1}} = \sigma_{a_i}$.

Process the simplices according to their order of entrance in the filtration:

Let $k = \dim \sigma_{a_i}$ (ie. $\sigma_{a_i} = [v_0, \cdots, v_k]$)
Persistent homology of filtered simplicial complexes

Let $K = (K_a \mid a \in \mathbb{R})$ be a finite filtered simplicial complex with N simplicies and let $K_{a_1} \subset K_{a_2} \subset \cdots \subset K_{a_N}$ be the discrete filtration induced by the entering times of the simplices: $K_{a_i} \setminus K_{a_{i-1}} = \sigma_{a_i}$.

Process the simplices according to their order of entrance in the filtration:

Let $k = \dim \sigma_{a_i}$ (ie. $\sigma_{a_i} = [v_0, \cdots, v_k]$)

Case 1: adding σ_{a_i} to $K_{a_{i-1}}$ creates a new k-dimensional topological feature in K_{a_i} (new homology class in H_k).

\Rightarrow the birth of a k-dim feature is registered.
Persistent homology of filtered simplicial complexes

Let $K = (K_a \mid a \in \mathbb{R})$ be a finite filtered simplicial complex with N simplicies and let $K_{a_1} \subset K_{a_2} \subset \cdots \subset K_{a_N}$ be the discrete filtration induced by the entering times of the simplices: $K_{a_i} \setminus K_{a_{i-1}} = \sigma_{a_i}$.

Process the simplices according to their order of entrance in the filtration:

Let $k = \dim \sigma_{a_i}$ (ie. $\sigma_{a_i} = [v_0, \cdots, v_k]$)

Case 1: adding σ_{a_i} to $K_{a_{i-1}}$ creates a new k-dimensional topological feature in K_{a_i} (new homology class in H_k).

Case 2: adding σ_{a_i} to $K_{a_{i-1}}$ kills a $(k-1)$-dimensional topological feature in K_{a_i} (homology class in H_{k-1}).

\Rightarrow the birth of a k-dim feature is registered.

\Rightarrow persistence algo. pairs the simplex σ_{a_i} to the simplex σ_{a_j} that gave birth to the killed feature.
Persistent homology of filtered simplicial complexes

Process the simplices according to their order of entrance in the filtration:

Let $k = \dim \sigma_{a_i}$ (ie. $\sigma_{a_i} = [v_0, \cdots, v_k]$)

Case 1: adding σ_{a_i} to K_{a_i-1} creates a new k-dimensional topological feature in K_{a_i} (new homology class in H_k).

Case 2: adding σ_{a_i} to K_{a_i-1} kills a $(k-1)$-dimensional topological feature in K_{a_i} (homology class in H_{k-1}).

\Rightarrow the birth of a k-dim feature is registered.

\Rightarrow persistence algo. pairs the simplex σ_{a_i} to the simplex σ_{a_j} that gave birth to the killed feature.

$\rightarrow (\sigma_{a_j}, \sigma_{a_i}) :$ persistence pair

$\rightarrow (a_j, a_i) \in \mathbb{R}^2 :$ point in the persistence diagram
Persistent homology of filtered simplicial complexes

Process the simplices according to their order of entrance in the filtration:

Let $k = \dim \sigma_{ai}$ (ie. $\sigma_{ai} = [v_0, \ldots, v_k]$)

Case 1: adding σ_{ai} to K_{ai-1} creates a new k-dimensional topological feature in K_{ai} (new homology class in H_k).

⇒ the birth of a k-dim feature is registered.

Case 2: adding σ_{ai} to K_{ai-1} kills a $(k - 1)$-dimensional topological feature in K_{ai} (homology class in H_{k-1}).

⇒ persistence algo. pairs the simplex σ_{ai} to the simplex σ_{aj} that gave birth to the killed feature.

Important to remember: the persistence pairs are determined by the order on the simplices; the corresponding points in the diagrams are determined by the indices.

$(a_j, a_i) \in \mathbb{R}^2$: point in the persistence diagram
The persistence algorithm: matrix version

Input: $\emptyset = K^0 \subset K^1 \subset \cdots \subset K^m = K$ a d-dimensional filtration of a simplicial complex K s.t. $K^{i+1} = K^i \cup \sigma^{i+1}$ where σ^{i+1} is a simplex of K.

The matrix of the boundary operator:

- $M = (m_{ij})_{i,j=1,\ldots,m}$ with coefficient in $\mathbb{Z}/2$ defined by
 \[m_{ij} = 1 \text{ if } \sigma^i \text{ is a face of } \sigma^j \text{ and } m_{ij} = 0 \text{ otherwise} \]

- For any column C_j, $l(j)$ is defined by
 \[(i = l(j)) \iff (m_{ij} = 1 \text{ and } m_{i'j} = 0 \quad \forall i' > i) \]
The persistence algorithm : matrix version

Input : \(\emptyset = K^0 \subset K^1 \subset \cdots \subset K^m = K \) a \(d \)-dimensional filtration of a simplicial complex \(K \) s. t. \(K^{i+1} = K^i \cup \sigma^{i+1} \) where \(\sigma^{i+1} \) is a simplex of \(K \).

Compute the matrix of the boundary operator \(M \)
For \(j = 0 \) to \(m \)
 While (there exists \(j' < j \) such that \(l(j') = l(j) \))
 \(C_j = C_j + C_{j'} \mod(2) \);
 End while
End for
Output the pairs \((l(j), j) \);

Remark : The worst case complexity of the algorithm is \(O(m^3) \) but much lower in most practical cases.
The persistence algorithm: matrix version

A simple example:

Paires : (2,3) (4,5) (6,7)
Persistent homology with the GUDHI library

GUDHI:
• a C++/Python open source software library for TDA,
• a developers team, an editorial board, open to external contributions,
• provides state-of-the-art TDA data structures and algorithms: design of filtrations, computation of pre-defined filtrations, persistence diagrams,...
• algorithms and tools for TDA and ML.

http://gudhi.gforge.inria.fr/
If there is some time left…
Persistence from an algebraic perspective

Definition: A persistence module \mathcal{V} is an indexed family of vector spaces $(V_a \mid a \in \mathbb{R})$ and a doubly-indexed family of linear maps $(v^b_a : V_a \to V_b \mid a \leq b)$ which satisfy the composition law $v^c_b \circ v^b_a = v^c_a$ whenever $a \leq b \leq c$, and where v^a_a is the identity map on V_a.

Examples:
— Let \mathcal{S} be a filtered simplicial complex. If $V_a = \text{H}(\mathcal{S}_a)$ and $v^b_a : \text{H}(\mathcal{S}_a) \to \text{H}(\mathcal{S}_b)$ is the linear map induced by the inclusion $\mathcal{S}_a \hookrightarrow \mathcal{S}_b$ then $(\text{H}(\mathcal{S}_a) \mid a \in \mathbb{R})$ is a persistence module.
— Given a metric space $(\mathbb{X}, d_\mathbb{X})$, $\text{H}(\text{Rips}(\mathbb{X}))$ is a persistence module.
— If $f : \mathbb{X} \to \mathbb{R}$ is a function, then the filtration defined by the sublevel sets of f, $F_a = f^{-1}((-\infty, a])$, induces a persistence module at homology level.
Persistence from an algebraic perspective

Definition: A persistence module \mathcal{V} is an indexed family of vector spaces $(V_a | a \in \mathbb{R})$ and a doubly-indexed family of linear maps $(v^b_a : V_a \to V_b | a \leq b)$ which satisfy the composition law $v^c_b \circ v^b_a = v^c_a$ whenever $a \leq b \leq c$, and where v^a_a is the identity map on V_a.

Definition: A persistence module \mathcal{V} is q-tame if for any $a < b$, v^b_a has a finite rank.

Theorem: [C., Cohen-Steiner, Glisse, Guibas, Oudot - SoCG’09], [C., de Silva, Glisse, Oudot 12]

q-tame persistence modules have well-defined persistence diagrams.
Persistence from an algebraic perspective

Definition: A persistence module \mathbb{V} is an indexed family of vector spaces $(V_a | a \in \mathbb{R})$ and a doubly-indexed family of linear maps $(v^b_a : V_a \to V_b | a \leq b)$ which satisfy the composition law $v^c_b \circ v^b_a = v^c_a$ whenever $a \leq b \leq c$, and where v^a_a is the identity map on V_a.

Definition: A persistence module \mathbb{V} is q-tame if for any $a < b$, v^b_a has a finite rank.

Theorem: [C., Cohen-Steiner, Glisse, Guibas, Oudot - SoCG’09], [C., de Silva, Glisse, Oudot 12]
q-tame persistence modules have well-defined persistence diagrams.

Example: Let \mathbb{X} be a precompact metric space. Then $H(\text{Rips}(\mathbb{X}))$ is q-tame.

Recall that a metric space (\mathbb{X}, ρ) is precompact if for any $\epsilon > 0$ there exists a finite subset $F_\epsilon \subset \mathbb{X}$ such that $d_H(\mathbb{X}, F_\epsilon) < \epsilon$ (i.e. $\forall x \in X, \exists p \in F_\epsilon$ s.t. $\rho(x, p) < \epsilon$).
Persistence from an algebraic perspective

Definition: A persistence module \(\mathbb{V} \) is an indexed family of vector spaces \((V_a | a \in \mathbb{R}) \) and a doubly-indexed family of linear maps \((v^b_a : V_a \to V_b | a \leq b) \) which satisfy the composition law \(v^c_b \circ v^b_a = v^c_a \) whenever \(a \leq b \leq c \), and where \(v^a_a \) is the identity map on \(V_a \).

A homomorphism of degree \(\epsilon \) between two persistence modules \(\mathbb{U} \) and \(\mathbb{V} \) is a collection \(\Phi \) of linear maps
\[
(\phi_a : U_a \to V_{a+\epsilon} | a \in \mathbb{R})
\]
such that \(v^b_{a+\epsilon} \circ \phi_a = \phi_b \circ u^b_a \) for all \(a \leq b \).

An \(\epsilon \)-interleaving between \(\mathbb{U} \) and \(\mathbb{V} \) is specified by two homomorphisms of degree \(\epsilon \) \(\Phi : \mathbb{U} \to \mathbb{V} \) and \(\Psi : \mathbb{V} \to \mathbb{U} \) s.t. \(\Phi \circ \Psi \) and \(\Psi \circ \Phi \) are the “shifts” of degree \(2\epsilon \) between \(\mathbb{U} \) and \(\mathbb{V} \).
Persistence from an algebraic perspective

Definition: A persistence module \mathcal{V} is an indexed family of vector spaces $(V_a | a \in \mathbb{R})$ and a doubly-indexed family of linear maps $(v^b_a : V_a \to V_b | a \leq b)$ which satisfy the composition law $v^c_b \circ v^b_a = v^c_a$ whenever $a \leq b \leq c$, and where v^a_a is the identity map on V_a.

Stability Thm [C., Cohen-Steiner, Glisse, Guibas, Oudot - SoCG '09], [C., de Silva, Glisse, Oudot 12]

If \mathcal{U} and \mathcal{V} are q-tame and ϵ-interleaved for some $\epsilon \geq 0$ then

$$d_B(dgm(\mathcal{U}), dgm(\mathcal{V})) \leq \epsilon$$
Persistence from an algebraic perspective

Definition: A persistence module \(\mathbb{V} \) is an indexed family of vector spaces \((V_a \mid a \in \mathbb{R}) \) and a doubly-indexed family of linear maps \((v^b_a : V_a \to V_b \mid a \leq b) \) which satisfy the composition law \(v^c_b \circ v^b_a = v^c_a \) whenever \(a \leq b \leq c \), and where \(v^a_a \) is the identity map on \(V_a \).

Stability Thm [C., Cohen-Steiner, Glisse, Guibas, Oudot - SoCG '09], [C., de Silva, Glisse, Oudot 12]

If \(\mathbb{U} \) and \(\mathbb{V} \) are q-tame and \(\epsilon \)-interleaved for some \(\epsilon \geq 0 \) then

\[
d_B(\text{dgm}(\mathbb{U}), \text{dgm}(\mathbb{V})) \leq \epsilon
\]

Exercise: Show the stability theorem for (tame) functions:
let \(X \) be a topological space and let \(f, g : X \to \mathbb{R} \) be two tame functions. Then

\[
d_B(D_f, D_g) \leq ||f - g||_\infty.
\]
Persistence from an algebraic perspective

Definition: A persistence module \mathbb{V} is an indexed family of vector spaces $(V_a | a \in \mathbb{R})$ and a doubly-indexed family of linear maps $(v_{a}^{b} : V_a \to V_b | a \leq b)$ which satisfy the composition law $v_{c}^{b} \circ v_{a}^{b} = v_{a}^{c}$ whenever $a \leq b \leq c$, and where v_{a}^{a} is the identity map on V_a.

Stability Thm: If U and V are q-tame and ϵ-interleaved for some $\epsilon \geq 0$ then

$$d_B(\text{dgm}(U), \text{dgm}(V)) \leq \epsilon$$

Strategy: build filtrations that induce q-tame homology persistence modules and that turn out to be ϵ-interleaved when the considered spaces/functions are $O(\epsilon)$-close.
A few applications of persistence
Persistence-based clustering

Combine a mode seeking approach with (0-dim) persistence computation.

Input:
1. A finite set X of observations (point cloud with coordinates or pairwise distance matrix),
2. A real valued function f defined on the observations (e.g. density estimate).

Goal: Partition the data according to the basins of attraction of the peaks of f

[C., Guibas, Oudot, Skraba - J. ACM 2013]
Persistence-based clustering

Combine a mode seeking approach with (0-dim) persistence computation.

1. Build a neighboring graph G on top of X.
2. Compute the (0-dim) persistence of f to identify prominent peaks \rightarrow number of clusters (union-find algorithm).

[C., Guibas, Oudot, Skraba - J. ACM 2013]
Persistence-based clustering

Combine a mode seeking approach with (0-dim) persistence computation.

[C., Guibas, Oudot, Skraba - J. ACM 2013]

1. Build a neighborhood graph G on top of X.

2. Compute the (0-dim) persistence of f to identify prominent peaks \rightarrow number of clusters (union-find algorithm).
Persistence-based clustering

Combine a mode seeking approach with (0-dim) persistence computation.

[C., Guibas, Oudot, Skraba - J. ACM 2013]

1. Build a neighboring graph G on top of X.
2. Compute the (0-dim) persistence of f to identify prominent peaks \rightarrow number of clusters (union-find algorithm).
Persistence-based clustering

Combine a mode seeking approach with (0-dim) persistence computation.

[C., Guibas, Oudot, Skraba - J. ACM 2013]

1. Build a neighboring graph G on top of X.
2. Compute the (0-dim) persistence of f to identify prominent peaks \rightarrow number of clusters (union-find algorithm).
3. Chose a threshold $\tau > 0$ and use the persistence algorithm to merge components with prominence less than τ.
Persistence-based clustering

Combine a mode seeking approach with (0-dim) persistence computation.

$\tau = 0$

Complexity of the algorithm: $O(n \log n)$

Theoretical guarantees:
- Stability of the number of clusters (w.r.t. perturbations of X and f).
- Partial stability of clusters: well identified stable parts in each cluster.

“soft” clustering
Application to non-rigid shape segmentation

[Skraba, Ovsjanikov, C., Guibas, NORDIA 10]

\(X \) : a 3D shape
\(f = \text{HKS function on } X \)

Problem: some part of clusters are unstable → dirty segments
Application to non-rigid shape segmentation

[Skraba, Ovsjanikov, C., Guibas, NORDIA 10]

Problem: some part of clusters are unstable → dirty segments

Idea:
- Run the persistence based algorithm several times on random perturbations of f (size bounded by the "persistence" gap).
- Partial stability of clusters allows to establish correspondences between clusters across the different runs → for any $x \in X$, a vector giving the probability for x to belong to each cluster.
Application to non-rigid shape segmentation

[Skraba, Ovsjanikov, C., Guibas, NORDIA 10]

An innovative start-up specialized in biological diagnosis from cytometry data.

Objective: unsupervised learning in large point clouds (several millions) in medium/high dimensions ($\approx 4 \rightarrow 80$)

Applications: medical diagnosis from blood samples (1 point $=$ 1 blood cell)

Methodology: TDA based approaches, combined with dim. reduction methods to identify relevant patterns and subsamples.
Persistence diagrams are not well-suited for classical ML algorithms (the space of PD is highly non linear)
Not always clear which part of the diagrams carries the relevant information.
A zoo of representations of persistence

(non exhaustive list - see also Gudhi representations)

- **Collections of 1D functions**
 - landscapes [Bubenik 2012]
 - Betti curves [Umeda 2017]

- **discrete measures**: (interesting statistical properties [Chazal, Divol 2018])
 - persistence images [Adams et al 2017]
 - convolution with Gaussian kernel [Reininghaus et al. 2015] [Chepushtanova et al. 2015] [Kusano Fukumisu Hiraoka 2016-17] [Le Yamada 2018]
 - sliced on lines [Carrière Oudot Cuturi 2017]

- **finite metric spaces** [Carrière Oudot Ovsjanikov 2015]

- **polynomial roots or evaluations** [Di Fabio Ferri 2015] [Kališnik 2016]
For $K : \mathbb{R}^2 \to \mathbb{R}$ a kernel and H a bandwidth matrix (e.g. a symmetric positive definite matrix), pose for $u \in \mathbb{R}^2$, $K_H(u) = |H|^{-1/2} K(H^{-1/2} \cdot u)$

For $D = \sum_i \delta_{p_i}$ a diagram, $K : \mathbb{R}^2 \to \mathbb{R}$ a kernel, H a bandwidth matrix and $w : \mathbb{R}^2 \to \mathbb{R}_+$ a weight function, one defines the persistence surface of D with kernel K and weight function w by:

$$\forall u \in \mathbb{R}^2, \rho(D)(u) = \sum_i w(p_i) K_H(u - p_i) = D(wK_H(u - \cdot))$$
Persistence diagrams as discrete measures

\[D := \sum_{p \in D} \delta_p \]

Motivations:
- The space of measures is much nicer than the space of P. D.!
- In the general algebraic persistence theory, persistence diagrams naturally appear as discrete measures in the plane.
- Many persistence representations can be expressed as

\[D(f) = \sum_{p \in D} f(p) = \int f \, dD \]

for well-chosen functions \(f : \mathbb{R}^2 \to \mathcal{H} \).

[C., de Silva, Glisse, Oudot 16]
Persistence diagrams as discrete measures

\[D := \sum_{p \in D} \delta_p \]

Benefits:
- Interesting statistical properties
- Data-driven selection of well-adapted representations (supervised and unsupervised, coming with guarantees)
- Optimisation of persistence-based functions

Many tools available and implemented in the GUDHI library
Filtrations revisited

Let \(n > 0 \) be an integer,
\(\mathcal{F}_n : \) the collection of non-empty subsets of \(\{1, \ldots, n\} \),
\(M : \) a real analytic compact \(d \)-dim. connected manifold (poss. with boundary).

Filtering function :

\[
\varphi = (\varphi[J])_{J \in \mathcal{F}_n} : M^n \to \mathbb{R}^{|\mathcal{F}_n|}
\]

satisfying the following conditions :

(K2) Invariance by permutation : For \(J \in \mathcal{F}_n \) and for \((x_1, \ldots, x_n) \in M^n \),
if \(\tau \) is a permutation of the entries having support included in \(J \), then
\[
\varphi[J](x_{\tau(1)}, \ldots, x_{\tau(n)}) = \varphi[J](x_1, \ldots, x_n).
\]

(K3) Monotony : For \(J \subset J' \in \mathcal{F}_n \), \(\varphi[J] \leq \varphi[J'] \).

Given \(x = (x_1, \cdots, x_n) \), \(\varphi(x) \) induces an order on the faces of the simplex with \(n \) vertices that is a filtration \(\mathcal{K}(x) : \)

\[
\forall J \in \mathcal{F}_n, \quad J \in \mathcal{K}(x, r) \iff \varphi[J](x) \leq r.
\]
Filtrations revisited

Not: for $x = (x_1, \ldots, x_n) \in M^n$ and for J a simplex, $x(J) := (x_j)_{j \in J}$

(K1) **Absence of interaction**: For $J \in \mathcal{F}_n$, $\varphi[J](x)$ only depends on $x(J)$.

(K2) **Invariance by permutation**: For $J \in \mathcal{F}_n$ and for $(x_1, \ldots, x_n) \in M^n$, if τ is a permutation of the entries having support included in J, then $\varphi[J](x_{\tau(1)}, \ldots, x_{\tau(n)}) = \varphi[J](x_1, \ldots, x_n)$.

(K3) **Monotony**: For $J \subset J' \in \mathcal{F}_n$, $\varphi[J] \leq \varphi[J']$.

(K4) **Compatibility**: For a simplex $J \in \mathcal{F}_n$ and for $j \in J$, if $\varphi[J](x_1, \ldots, x_n)$ is not a function of x_j on some open set U of M^n, then $\varphi[J] \equiv \varphi[J\setminus\{j\}]$ on U.

(K5) **Smoothness**: The function φ is subanalytic and the gradient of each of its entries (which is defined a.s.e.) is non vanishing a.s.e.
Filtrations revisited

Let $n > 0$ be an integer,
$\mathcal{F}_n :$ the collection of non-empty subsets of $\{1, \ldots, n\},$
$M :$ a real analytic compact d-dim. connected manifold (poss. with boundary).

Filtering function :

$$\varphi = (\varphi[J])_{J \in \mathcal{F}_n} : M^n \to \mathbb{R}^{|\mathcal{F}_n|}$$

satisfying the following conditions :

(K2) *Invariance by permutation* : For $J \in \mathcal{F}_n$ and for $(x_1, \ldots, x_n) \in M^n$, if τ is a permutation of the entries having support included in J, then
$$\varphi[J](x_{\tau(1)}, \ldots, x_{\tau(n)}) = \varphi[J](x_1, \ldots, x_n).$$

(K3) *Monotony* : For $J \subset J' \in \mathcal{F}_n$, $\varphi[J] \leq \varphi[J'].$

Given $x = (x_1, \cdots, x_n)$, $\varphi(x)$ induces an order on the faces of the simplex with n vertices that is a filtration $\mathcal{K}(x) :

$$\forall J \in \mathcal{F}_n, \ J \in \mathcal{K}(x, r) \iff \varphi[J](x) \leq r.$$
Filtrations revisited

Not: for \(x = (x_1, \ldots, x_n) \in M^n \) and for \(J \) a simplex, \(x(J) := (x_j)_{j \in J} \)

(K1) **Absence of interaction**: For \(J \in \mathcal{F}_n \), \(\varphi[J](x) \) only depends on \(x(J) \).

(K2) **Invariance by permutation**: For \(J \in \mathcal{F}_n \) and for \((x_1, \ldots, x_n) \in M^n \), if \(\tau \) is a permutation of the entries having support included in \(J \), then
\[
\varphi[J](x_{\tau(1)}, \ldots, x_{\tau(n)}) = \varphi[J](x_1, \ldots, x_n).
\]

(K3) **Monotony**: For \(J \subset J' \in \mathcal{F}_n \), \(\varphi[J] \leq \varphi[J'] \).

(K4) **Compatibility**: For a simplex \(J \in \mathcal{F}_n \) and for \(j \in J \), if \(\varphi[J](x_1, \ldots, x_n) \) is not a function of \(x_j \) on some open set \(U \) of \(M^n \), then \(\varphi[J] \equiv \varphi[J \setminus \{j\}] \) on \(U \).

(K5) **Smoothness**: The function \(\varphi \) is subanalytic and the gradient of each of its entries (which is defined a.s.e.) is non vanishing a.s.e..
The example of the Vietoris-Rips filtration

\[\varphi[J](x) = \max_{i,j \in J} d(x_i, x_j) \]

(K1) **Absence of interaction**: For \(J \in \mathcal{F}_n \), \(\varphi[J](x) \) only depends on \(x(J) \).

(K2) **Invariance by permutation**: For \(J \in \mathcal{F}_n \) and for \((x_1, \ldots, x_n) \in M^n \), if \(\tau \) is a permutation of the entries having support included in \(J \), then
\[\varphi[J](x_{\tau(1)}, \ldots, x_{\tau(n)}) = \varphi[J](x_1, \ldots, x_n). \]

(K3) **Monotony**: For \(J \subset J' \in \mathcal{F}_n \), \(\varphi[J] \leq \varphi[J'] \).

(K4) **Compatibility**: For a simplex \(J \in \mathcal{F}_n \) and for \(j \in J \), if \(\varphi[J](x_1, \ldots, x_n) \) is not a function of \(x_j \) on some open set \(U \) of \(M^n \), then \(\varphi[J] \equiv \varphi[J \setminus \{j\}] \) on \(U \).

(K5') **Smoothness**: The function \(\varphi \) is subanalytic and the gradient of each of its entries \(J \) of size larger than 1 is non vanishing a.e. and for \(J = \{j\} \), \(\varphi[\{j\}] \equiv 0 \).
The example of the Vietoris-Rips filtration

\[\varphi[J](x) = \max_{i,j \in J} d(x_i, x_j) \]

(K1) **Absence of interaction** : For \(J \in \mathcal{F}_n \), \(\varphi[J](x) \) only depends on \(x(J) \).

(K2) **Invariance by permutation** : For \(J \in \mathcal{F}_n \) and for \((x_1, \ldots, x_n) \in M^n \), if \(\tau \) is a permutation of the entries having support included in \(J \), then \(\varphi[J](x_{\tau(1)}, \ldots, x_{\tau(n)}) = \varphi[J](x_1, \ldots, x_n) \).

(K3) **Monotony** : For \(J \subset J' \in \mathcal{F}_n \), \(\varphi[J] \leq \varphi[J'] \).

(K4) **Compatibility** : For a simplex \(J \in \mathcal{F}_n \) and for \(j \in J \), if \(\varphi[J](x_1, \ldots, x_n) \) is not a function of \(x_j \) on some open set \(U \) of \(M^n \), then \(\varphi[J] \equiv \varphi[J \setminus \{j\}] \) on \(U \).

(K5') **Smoothness** : The function \(\varphi \) is subanalytic and the gradient of each of its entries \(J \) of size larger than 1 is non vanishing a.e. and for \(J = \{j\} \), \(\varphi[\{j\}] \equiv 0 \).
The example of the Vietoris-Rips filtration

\[\varphi[J](x) = \max_{i,j \in J} d(x_i, x_j) \]

(K1) Absence of interaction: For \(J \in \mathcal{F}_n \), \(\varphi[J](x) \) only depends on \(x(J) \).

(K2) Invariance by permutation: For \(J \in \mathcal{F}_n \) and for \((x_1, \ldots, x_n) \in M^n \), if \(\tau \) is a permutation of the entries having support included in \(J \), then \(\varphi[J](x_{\tau(1)}, \ldots, x_{\tau(n)}) = \varphi[J](x_1, \ldots, x_n) \).

(K3) Monotony: For \(J \subseteq J' \in \mathcal{F}_n \), \(\varphi[J] \leq \varphi[J'] \).

(K4) Compatibility: For a simplex \(J \in \mathcal{F}_n \) and for \(j \in J \), if \(\varphi[J](x_1, \ldots, x_n) \) is not a function of \(x_j \) on some open set \(U \) of \(M^n \), then \(\varphi[J] \equiv \varphi[J\setminus\{j\}] \) on \(U \).

(K5') Smoothness: The function \(\varphi \) is subanalytic and the gradient of each of its entries \(J \) of size larger than \(1 \) is non vanishing a.e. and for \(J = \{j\} \), \(\varphi[\{j\}] \equiv 0 \).
The example of the Vietoris-Rips filtration

\[\varphi[J](x) = \max_{i,j \in J} d(x_i, x_j) \]

(K1) **Absence of interaction**: For \(J \in \mathcal{F}_n \), \(\varphi[J](x) \) only depends on \(x(J) \).

(K2) **Invariance by permutation**: For \(J \in \mathcal{F}_n \) and for \((x_1, \ldots, x_n) \in M^n \), if \(\tau \) is a permutation of the entries having support included in \(J \), then \(\varphi[J](x_{\tau(1)}, \ldots, x_{\tau(n)}) = \varphi[J](x_1, \ldots, x_n) \).

(K3) **Monotony**: For \(J \subset J' \in \mathcal{F}_n \), \(\varphi[J] \leq \varphi[J'] \).

(K4) **Compatibility**: For a simplex \(J \in \mathcal{F}_n \) and for \(j \in J \), if \(\varphi[J](x_1, \ldots, x_n) \) is not a function of \(x_j \) on some open set \(U \) of \(M^n \), then \(\varphi[J] \equiv \varphi[J\setminus\{j\}] \) on \(U \).

(K5’) **Smoothness**: The function \(\varphi \) is subanalytic and the gradient of each of its entries \(J \) of size larger than 1 is non vanishing a.e. and for \(J = \{j\} \), \(\varphi[\{j\}] \equiv 0 \).
The example of the Vietoris-Rips filtration

\[\varphi[J](x) = \max_{i,j \in J} d(x_i, x_j) \]

(K1) **Absence of interaction** : For \(J \in \mathcal{F}_n \), \(\varphi[J](x) \) only depends on \(x(J) \).

(K2) **Invariance by permutation** : For \(J \in \mathcal{F}_n \) and for \((x_1, \ldots, x_n) \in M^n \), if \(\tau \) is a permutation of the entries having support included in \(J \), then \(\varphi[J](x_{\tau(1)}, \ldots, x_{\tau(n)}) = \varphi[J](x_1, \ldots, x_n) \).

(K3) **Monotony** : For \(J \subset J' \in \mathcal{F}_n \), \(\varphi[J] \leq \varphi[J'] \).

(K4) **Compatibility** : For a simplex \(J \in \mathcal{F}_n \) and for \(j \in J \), if \(\varphi[J](x_1, \ldots, x_n) \) is not a function of \(x_j \) on some open set \(U \) of \(M^n \), then \(\varphi[J] \equiv \varphi[J \setminus \{j\}] \) on \(U \).

(K5’) **Smoothness** : The function \(\varphi \) is subanalytic and the gradient of each of its entries \(J \) of size larger than 1 is non vanishing a.e. and for \(J = \{j\} \), \(\varphi[\{j\}] \equiv 0 \).
The example of the Vietoris-Rips filtration

\[\varphi[J](x) = \max_{i,j \in J} d(x_i, x_j) \]

(K1) Absence of interaction : For \(J \in \mathcal{F}_n \), \(\varphi[J](x) \) only depends on \(x(J) \).

(K2) Invariance by permutation : For \(J \in \mathcal{F}_n \) and for \((x_1, \ldots, x_n) \in M^n\), if \(\tau \) is a permutation of the entries having support included in \(J \), then
\[\varphi[J](x_{\tau(1)}, \ldots, x_{\tau(n)}) = \varphi[J](x_1, \ldots, x_n). \]

(K3) Monotony : For \(J \subset J' \in \mathcal{F}_n \), \(\varphi[J] \leq \varphi[J'] \).

(K4) Compatibility : For a simplex \(J \in \mathcal{F}_n \) and for \(j \in J \), if \(\varphi[J](x_1, \ldots, x_n) \) is not a function of \(x_j \) on some open set \(U \) of \(M^n \), then \(\varphi[J] \equiv \varphi[J \setminus \{j\}] \) on \(U \).

(K5') Smoothness : The function \(\varphi \) is subanalytic and the gradient of each of its entries \(J \) of size larger than 1 is non vanishing a.e. and for \(J = \{j\} \), \(\varphi[\{j\}] \equiv 0 \).
Theorem: Fix $n \geq 1$. Assume that:

- M is a real analytic compact d-dimensional connected submanifold possibly with boundary,
- X is a random variable on M^n having a density with respect to the Haussdorf measure \mathcal{H}_{dn},
- \mathcal{K} satisfies the assumptions (K1)-(K5).

Then, for $s \geq 0$, $E[D_s[\mathcal{K}(X)]]$ has a density with respect to the Lebesgue measure on the half plane $\Delta = \{(b, d) \in \mathbb{R}^2 : b \leq d\}$.
The density of expected persistence diagrams

Theorem: Fix \(n \geq 1 \). Assume that:

- \(M \) is a real analytic compact \(d \)-dimensional connected riemannian manifold possibly with boundary,
- \(X \) is a random variable on \(M^n \) having a density with respect to the Haussdorf measure \(\mathcal{H}_{dn} \),
- \(\mathcal{K} \) satisfies the assumptions (K1)-(K4) and (K5’).

Then, for \(s \geq 1 \), \(E[D_s[\mathcal{K}(X)]] \) has a density with respect to the Lebesgue measure on \(\Delta \). Moreover, \(E[D_0[\mathcal{K}(X)]] \) has a density with respect to the Lebesgue measure on the vertical line \(\{0\} \times [0, \infty) \).
The density of expected persistence diagrams

Theorem: Fix \(n \geq 1 \). Assume that:
- \(M \) is a real analytic compact \(d \)-dimensional connected Riemannian manifold possibly with boundary,
- \(X \) is a random variable on \(M^n \) having a density with respect to the Haussdorf measure \(\mathcal{H}_{dn} \),
- \(\mathcal{K} \) satisfies the assumptions (K1)-(K4) and (K5’).

Then, for \(s \geq 1 \), \(E[D_s[\mathcal{K}(X)]] \) has a density with respect to the Lebesgue measure on \(\Delta \). Moreover, \(E[D_0[\mathcal{K}(X)]] \) has a density with respect to the Lebesgue measure on the vertical line \(\{0\} \times [0, \infty) \).

Theorem [smoothness]: Under the assumption of previous theorem, if moreover \(X \in M^n \) has a density of class \(C^k \) with respect to \(\mathcal{H}_{nd} \). Then, for \(s \geq 0 \), the density of \(E[D_s[\mathcal{K}(X)]] \) is of class \(C^k \).
Sketch of proof

1. There exists a partition of the complement of a (subanalytic) set of measure 0 in M^n by open sets V_1, \cdots, V_R such that:

 - the order of the simplices of $\mathcal{K}(x)$ is constant on each V_r,
 - for any $r = 1, \cdots, R$, and any $x \in V_r$,

 $$D_s[\mathcal{K}(x)] = \sum_{i=1}^{N_r} \delta_{r_i}$$

 with $r_i = (\varphi[J_{i1}](x), \varphi[J_{i2}](x))$ where N_r, J_{i1}, J_{i2} only depends on V_r.
 - J_{i1}, J_{i2} can be chosen so that the differential of $\Phi_{ir} : x \in V_r \rightarrow r_i = (\varphi[J_{i1}](x), \varphi[J_{i2}](x))$

 has maximal rank (2).
2. The expected diagram can be written as

\[
E[D_s[K(\mathbf{X})]] = \sum_{r=1}^{R} E \left[\mathbb{1}\{\mathbf{X} \in V_r\} D_s[K(\mathbf{X})] \right] = \sum_{r=1}^{R} E \left[\mathbb{1}\{\mathbf{X} \in V_r\} \sum_{i=1}^{N_r} \delta_{ri} \right]
\]

\[
= \sum_{r=1}^{R} \sum_{i=1}^{N_r} E[\mathbb{1}\{\mathbf{X} \in V_r\}\delta_{ri}]
\]
2. The expected diagram can be written as

\[
E[D_s[K(X)]] = \sum_{r=1}^{R} E \left[\mathbb{1}\{X \in V_r\} D_s[K(X)] \right] = \sum_{r=1}^{R} E \left[\mathbb{1}\{X \in V_r\} \sum_{i=1}^{N_r} \delta_{r_i} \right]
\]

\[
= \sum_{r=1}^{R} \sum_{i=1}^{N_r} E \left[\mathbb{1}\{X \in V_r\} \delta_{r_i} \right]
\]

3. Use the co-area formula:

\[
\mu_{ir}(B) = P(\Phi_{ir}(X) \in B, X \in V_r)
\]

\[
= \int_{V_r} \mathbb{1}\{\Phi_{ir}(x) \in B\} \kappa(x) d\mathcal{H}^{nd}(x)
\]

\[
= \int_{u \in B} \int_{x \in \Phi_{ir}^{-1}(u)} (J\Phi_{ir}(x))^{-1} \kappa(x) d\mathcal{H}^{nd-2}(x) du.
\]
The Hausdorff measure and the co-area formula

Definition: Let k be a non-negative number. For $A \subset \mathbb{R}^D$, and $\delta > 0$, consider

$$H_\delta^k(A) := \inf \left\{ \sum_i \text{diam}(U_i)^k, A \subset \bigcup_i U_i \text{ and diam}(U_i) < \delta \right\}.$$

The k-dimensional Haussdorf measure on \mathbb{R}^D of A is defined by $H_k^k(A) := \lim_{\delta \to 0} H_\delta^k(A)$.

Theorem [Co-area formula]: Let M (resp. N) be a smooth Riemannian manifold of dimension m (resp n). Assume that $m \geq n$ and let $\Phi : M \to N$ be a differentiable map. Denote by $D\Phi$ the differential of Φ. The Jacobian of Φ is defined by $J\Phi = \sqrt{\det((D\Phi) \times (D\Phi)^t)}$. For $f : M \to N$ a positive measurable function, the following equality holds:

$$\int_M f(x) J\Phi(x) dH_m(x) = \int_N \left(\int_{x \in \Phi^{-1}\{y\}} f(x) dH_{m-n}(x) \right) dH_n(y).$$
For $K : \mathbb{R}^2 \rightarrow \mathbb{R}$ a kernel and H a bandwidth matrix (e.g. a symmetric positive definite matrix), pose for $u \in \mathbb{R}^2$, $K_H(z) = |H|^{-1/2} K(H^{-1/2} \cdot u)$

For $D = \sum_i \delta_{r_i}$ a diagram, $K : \mathbb{R}^2 \rightarrow \mathbb{R}$ a kernel, H a bandwidth matrix and $w : \mathbb{R}^2 \rightarrow \mathbb{R}^+$ a weight function, one defines the persistence surface of D with kernel K and weight function w by:

$$\forall z \in \mathbb{R}^2, \rho(D)(u) = \sum_i w(r_i) K_H(u - r_i) = D(wK_H(u - \cdot))$$
For $K : \mathbb{R}^2 \to \mathbb{R}$ a kernel and H a bandwidth matrix (e.g. a symmetric positive definite matrix), pose for $u \in \mathbb{R}^2$, $K_H(z) = |H|^{-1/2}K(H^{-1/2} \cdot u)$.

For $D = \sum_i \delta_{r_i}$ a diagram, $K : \mathbb{R}^2 \to \mathbb{R}$ a kernel, H a bandwidth matrix and $w : \mathbb{R}^2 \to \mathbb{R}^+$ a weight function, one defines the persistence surface of D with kernel K and weight function w by:

$$\forall z \in \mathbb{R}^2, \rho(D)(u) = \sum_i w(r_i)K_H(u - r_i) = D(wK_H(u - \cdot))$$

\Rightarrow persistence surfaces can be seen as kernel estimates of $E[D_s[K(X)]]$.

[Adams et al, JMLR 2017]
Persistence images

The realization of 3 different processes

The overlay of 40 different persistence diagrams

The persistence images with weight function $w(r) = (r_2 - r_1)^3$ and bandwidth selected using cross-validation.
Thank you for your attention!