### Rouen - September 22, 2022

# Comprendre la structure topologique des données : une introduction à l'homologie persistante.

Frédéric Chazal DataShape team Inria & Laboratoire de Mathématiques d'Orsay Institut DATAIA Université Paris-Saclay









### What is Topological Data Analysis (TDA)?









[Cell population cytometry - MetaFora courtesy]

[Porous material (IFPEN courtesy)]

[Sensors (Sysnav courtesy)]

Modern data carry complex, but important, geometric/topological structure !

# What is Topological Data Analysis (TDA)?



Topological Data Analysis (TDA) is a recent field whose aim is to :

- infer relevant topological and geometric features from complex data,
- take advantage of topological/geometric information for further Data Analysis, Machine Learning and AI tasks :
  - using topological features in ML pipelines,
  - taking advantage of topological information to improve ML pipelines.

## A classical TDA pipeline



- 2. Compute multiscale topol. signatures : persistent homology
- Take advantage of the signature for further Machine Learning and AI tasks : Statistical aspects and representations of persistence

Representations of persistence

# Persistent homology Starting with a few examples

A general mathematical framework to encode the evolution of the topology (homology) of families of nested spaces (filtrations).

- 90's : size theory (P. Frosini et al), framed Morse complex and stability (S.A. Barannikov).
- 2002 2005 : persistent homology (H. Edelsbrunner et al, Carlsson et al).
- important mathematical and practical developments since the 2000's.

• Tracking and encoding the evolution of the connected components (0-dimensional homology) of the sublevel sets of a function



• Tracking and encoding the evolution of the connected components (0-dimensional homology) of the sublevel sets of a function



• Tracking and encoding the evolution of the connected components (0-dimensional homology) of the sublevel sets of a function



• Tracking and encoding the evolution of the connected components (0-dimensional homology) of the sublevel sets of a function



• Tracking and encoding the evolution of the connected components (0-dimensional homology) of the sublevel sets of a function



• Tracking and encoding the evolution of the connected components (0-dimensional homology) of the sublevel sets of a function



• Tracking and encoding the evolution of the connected components (0-dimensional homology) of the sublevel sets of a function



- $\bullet$  Tracking and encoding the evolution of the connected components (0-dimensional homology) of the sublevel sets of a function
- The family of sublevel sets of a function is an example of filtration.
- Finite set of intervals (barcode) encodes births/deaths of topological features.



- $\bullet$  Tracking and encoding the evolution of the connected components (0-dimensional homology) of the sublevel sets of a function
- The family of sublevel sets of a function is an example of filtration.
- Finite set of intervals (barcode) encodes births/deaths of topological features.

















Tracking and encoding the evolution of the connected components (0-dimensional homology) and cycles (1-dimensional homology) of the sublevel sets.

Homology : an algebraic way to rigorously formalize the notion of k-dimensional cycles through a vector space (or a group), the homology group whose dimension is the number of "independent" cycles (the Betti number).

### Stability properties



What if f is slightly perturbed?



### Distance between persistence diagrams



The bottleneck distance between two diagrams  $D_1$  and  $D_2$  is

$$d_B(D_1, D_2) = \inf_{\gamma \in \Gamma} \sup_{p \in D_1} \|p - \gamma(p)\|_{\infty}$$

where  $\Gamma$  is the set of all the bijections between  $D_1$  and  $D_2$  and  $||p - q||_{\infty} = \max(|x_p - x_q|, |y_p - y_q|).$ 

### Stability properties



### Theorem (Stability) : For any *tame* functions $f, g : \mathbb{X} \to \mathbb{R}$ , $d_B(D_f, D_g) \le ||f - g||_{\infty}$ .

[Baranikov 94], [Cohen-Steiner, Edelsbrunner, Harer 05], [C., Cohen-Steiner, Glisse, Guibas, Oudot - SoCG 09], [C., de Silva, Glisse, Oudot 12]



- Filtrations allow to construct "shapes" representing the data in a multiscale way.
- Persistent homology : encode the evolution of the topology across the scales → multi-scale topological signatures.
- A general and well-studied mathematical framework.



- Filtrations allow to construct "shapes" representing the data in a multiscale way.
- Persistent homology : encode the evolution of the topology across the scales → multi-scale topological signatures.
- A general and well-studied mathematical framework.



- Filtrations allow to construct "shapes" representing the data in a multiscale way.
- Persistent homology : encode the evolution of the topology across the scales → multi-scale topological signatures.
- A general and well-studied mathematical framework.



- Filtrations allow to construct "shapes" representing the data in a multiscale way.
- Persistent homology : encode the evolution of the topology across the scales → multi-scale topological signatures.
- A general and well-studied mathematical framework.





- Filtrations allow to construct "shapes" representing the data in a multiscale way.
- Persistent homology : encode the evolution of the topology across the scales  $\rightarrow$  multi-scale topological signatures.
- A general and well-studied mathematical framework.

Simplicial complexes, filtrations, homology and persistent homology

### Simplicial complexes



Given a set  $P = \{p_0, \ldots, p_k\} \subset \mathbb{R}^d$  of k + 1 affinely independent points, the kdimensional simplex  $\sigma$ , or k-simplex for short, spanned by P is the set of convex combinations

$$\sum_{i=0}^{k} \lambda_i p_i, \quad \text{with} \quad \sum_{i=0}^{k} \lambda_i = 1 \quad \text{and} \quad \lambda_i \ge 0.$$

The points  $p_0, \ldots, p_k$  are called the vertices of  $\sigma$ .

### Simplicial complexes



A (finite) simplicial complex K in  $\mathbb{R}^d$  is a (finite) collection of simplices such that :

- 1. any face of a simplex of K is a simplex of K,
- 2. the intersection of any two simplices of K is either empty or a common face of both.

The underlying space of K, denoted by  $|K| \subset \mathbb{R}^d$  is the union of the simplices of K.

### Abstract simplicial complexes

Let P be a set. An abstract simplicial complex K with vertex set P is a set of finite subsets of P satisfying the two conditions :

- 1. The elements of P belong to K.
- 2. If  $\tau \in K$  and  $\sigma \subseteq \tau$ , then  $\sigma \in K$ .



The elements of K are the simplices.

#### IMPORTANT

Simplicial complexes can be seen at the same time as geometric/topological spaces (good for top./geom. inference) and as combinatorial objects (abstract simplicial complexes, good for computations).

## Homology in a nutshell (with coeff. in $\mathbb{Z}/2\mathbb{Z}$ )

Formalize the notion of connected components, cycles/holes, voids... in a topological space (here we will restrict to simplicial complexes).



- 2 connected components (0-dim homology)
- 4 cycles (1-dim homology)
- 1 void (2-dim homology)

### Homology in a nutshell (with coeff. in $\mathbb{Z}/2\mathbb{Z}$ )

### The space of k-chains :

Let K be a d-dimensional simplicial complex. Let  $k \in \{0, 1, \dots, d\}$  and  $\{\sigma_1, \dots, \sigma_p\}$  be the set of k-simplices of K.

k-chain :

$$c = \sum_{i=1}^{p} \varepsilon_i \sigma_i$$
 with  $\varepsilon_i \in \mathbb{Z}/2\mathbb{Z} = \{0, 1\}$ 

Sum of *k*-chains :

$$c + c' = \sum_{i=1}^{p} (\varepsilon_i + \varepsilon'_i) \sigma_i$$
 and  $\lambda . c = \sum_{i=1}^{p} (\lambda \varepsilon'_i) \sigma_i$ 

where the sums  $\varepsilon_i + \varepsilon'_i$  and the products  $\lambda \varepsilon_i$  are modulo 2.

### Homology in a nutshell (with coeff. in $\mathbb{Z}/2\mathbb{Z}$ )

#### The boundary operator :

The boundary  $\partial \sigma$  of a k-simplex  $\sigma$  is the sum of its (k-1)-faces. This is a (k-1)-chain.

If 
$$\sigma = [v_0, \cdots, v_k]$$
 then  $\partial_k \sigma = \sum_{i=0}^k (-1)^i [v_0 \cdots \hat{v}_i \cdots v_k]$ 

The boundary operator is the linear map defined by

$$\begin{array}{rcccc} \partial_k : & \mathcal{C}_k(K) & \to & \mathcal{C}_{k-1}(K) \\ & c & \to & \partial_k c = \sum_{\sigma \in c} \partial_k \sigma \end{array}$$

$$\partial_k \partial_{k+1} := \partial_k \circ \partial_{k+1} = 0$$
#### Homology in a nutshell (with coeff. in $\mathbb{Z}/2\mathbb{Z}$ )

#### Cycles and boundaries :

The chain complex associated to a complex  ${\cal K}$  of dimension d

$$\emptyset \to \mathcal{C}_d(K) \xrightarrow{\partial} \mathcal{C}_{d-1}(K) \xrightarrow{\partial} \cdots \mathcal{C}_{k+1}(K) \xrightarrow{\partial} \mathcal{C}_k(K) \xrightarrow{\partial} \cdots \mathcal{C}_1(K) \xrightarrow{\partial} \mathcal{C}_0(K) \xrightarrow{\partial} k$$
-cycles :

$$Z_k(K) := \ker(\partial : \mathcal{C}_k \to \mathcal{C}_{k-1}) = \{ c \in \mathcal{C}_k : \partial c = \emptyset \}$$

k-boundaries :

$$B_k(K) := im(\partial : \mathcal{C}_{k+1} \to \mathcal{C}_k) = \{c \in \mathcal{C}_k : \exists c' \in \mathcal{C}_{k+1}, c = \partial c'\}$$

$$B_k(K) \subset Z_k(K) \subset \mathcal{C}_k(K)$$

Homology in a nutshell (with coeff. in  $\mathbb{Z}/2\mathbb{Z}$ )

Homology groups and Betti numbers :

 $B_k(K) \subset Z_k(K) \subset \mathcal{C}_k(K)$ 

- The  $k^{th}$  homology group of  $K : H_k(K) = Z_k/B_k$
- Tout each cycle  $c \in Z_k(K)$  corresponds its homology class  $c + B_k(K) = \{c + b : b \in B_k(K)\}.$
- Two cycles c, c' are homologous if they are in the same homology class :  $\exists b \in B_k(K)$  s. t. b = c' c(=c'+c).
- The  $k^{th}$  Betti number of  $K : \beta_k(K) = \dim(H_k(K))$ .

**Remark :**  $\beta_0(K) =$  number of connected components of K.

#### Cycles and boundaries



# Filtrations of simplicial complexes

- A filtered simplicial complex (or a filtration) K built on top of a set X is a family (K<sub>a</sub> | a ∈ T), T ⊆ R, of subcomplexes of some fixed simplicial complex K with vertex set X s. t. K<sub>a</sub> ⊆ K<sub>b</sub> for any a ≤ b.
- More generaly, filtration = nested family of topological spaces indexed by T.

Persistent homology of a filtered simplicial complexe encodes the evolution of the homology of the subcomplexes.

# Filtrations of simplicial complexes

- A filtered simplicial complex (or a filtration) K built on top of a set X is a family (K<sub>a</sub> | a ∈ T), T ⊆ R, of subcomplexes of some fixed simplicial complex K with vertex set X s. t. K<sub>a</sub> ⊆ K<sub>b</sub> for any a ≤ b.
- More generaly, filtration = nested family of topological spaces indexed by T.

Many examples and ways to design filtrations depending on the application and targeted objectives : sublevel and upperlevel sets, Čech complex,...

# Sublevel set filtration associated to a function



- $\bullet~f$  a real valued function defined on the vertices of K
- For  $\sigma = [v_0, \cdots, v_k] \in K$ ,  $f(\sigma) = \max_{i=0, \cdots, k} f(v_i)$
- The simplices of K are ordered according increasing f values (and dimension in case of equal values on different simplices).

# Sublevel set filtration associated to a function



- $\bullet~f$  a real valued function defined on the vertices of K
- For  $\sigma = [v_0, \cdots, v_k] \in K$ ,  $f(\sigma) = \max_{i=0, \cdots, k} f(v_i)$
- The simplices of K are ordered according increasing f values (and dimension in case of equal values on different simplices).

### Example : the Vietoris-Rips filtration



Let V be a point cloud (in a metric space (X, d)).

The Vietoris-Rips complex  $\operatorname{Rips}(V)$  is the filtered simplicial complex indexed by  $\mathbb{R}$  whose vertex set is V and defined by :

 $\sigma = [p_0 p_1 \cdots p_k] \in \operatorname{Rips}(V, \alpha) \text{ iff } \forall i, j \in \{0, \cdots, k\}, \ d(p_i, p_j) \le \alpha$ 

Easy to compute and fully determined by its 1-skeleton

# Stability properties



**Rem :** This result also holds for other families of filtrations (particular case of a more general thm).

#### Hausdorff distance



Let  $A, B \subset M$  be two compact subsets of a metric space (M, d)

$$d_H(A,B) = \max\{\sup_{b\in B} d(b,A), \sup_{a\in A} d(a,B)\}$$

where  $d(b, A) = \sup_{a \in A} d(b, a)$ .

**Input :** A filtration of a simplicial complex  $\emptyset = K^0 \subset K^1 \subset \cdots \subset K^m = K$ , s. t.  $K^{i+1} = K^i \cup \sigma^{i+1}$  where  $\sigma^{i+1}$  is a simplex of K.

**Output :** The Betti numbers  $\beta_0, \beta_1, \cdots, \beta_d$  of K.

$$\begin{split} \beta_0 &= \beta_1 = \cdots = \beta_d = 0; \\ \text{for } i &= 1 \text{ to } m \\ k &= \dim \sigma^i - 1; \\ \text{if } \sigma^i \text{ is contained in a } (k+1)\text{-cycle in } K^i \\ \text{then } \beta_{k+1} &= \beta_{k+1} + 1; \\ \text{else } \beta_k &= \beta_k - 1; \\ \text{end if;} \\ \text{end for;} \\ \text{output } (\beta_0, \beta_1, \cdots, \beta_d); \end{split}$$

**Input :** A filtration of a simplicial complex  $\emptyset = K^0 \subset K^1 \subset \cdots \subset K^m = K$ , s. t.  $K^{i+1} = K^i \cup \sigma^{i+1}$  where  $\sigma^{i+1}$  is a simplex of K.

**Output :** The Betti numbers  $\beta_0, \beta_1, \cdots, \beta_d$  of K.





(1,0,0)

**Input :** A filtration of a simplicial complex  $\emptyset = K^0 \subset K^1 \subset \cdots \subset K^m = K$ , s. t.  $K^{i+1} = K^i \cup \sigma^{i+1}$  where  $\sigma^{i+1}$  is a simplex of K.

**Output :** The Betti numbers  $\beta_0, \beta_1, \cdots, \beta_d$  of K.

$$\begin{split} \beta_0 &= \beta_1 = \dots = \beta_d = 0;\\ \text{for } i &= 1 \text{ to } m\\ k &= \dim \sigma^i - 1;\\ \text{if } \sigma^i \text{ is contained in a } (k+1)\text{-cycle in } K^i\\ \text{ then } \beta_{k+1} &= \beta_{k+1} + 1;\\ \text{else } \beta_k &= \beta_k - 1;\\ \text{end if };\\ \text{end for };\\ \text{output } (\beta_0, \beta_1, \dots, \beta_d); \end{split}$$

**Remark :** At the  $i^{th}$  step of the algorithm, the vector  $(\beta_0, \dots, \beta_d)$  stores the Betti numbers of  $K^i$ .

**Input :** A filtration of a simplicial complex  $\emptyset = K^0 \subset K^1 \subset \cdots \subset K^m = K$ , s. t.  $K^{i+1} = K^i \cup \sigma^{i+1}$  where  $\sigma^{i+1}$  is a simplex of K.

**Output :** The Betti numbers  $\beta_0, \beta_1, \cdots, \beta_d$  of K.

$$\begin{array}{l} \beta_0 = \beta_1 = \cdots = \beta_d = 0;\\ \text{for } i = 1 \text{ to } m\\ k = \dim \sigma^i - 1;\\ \text{if } \sigma^i \text{ is contained in a } (k+1)\text{-cycle in } K^i\\ \text{then } \beta_{k+1} = \beta_{k+1} + 1;\\ \text{else } \beta_k = \beta_k - 1;\\ \text{end if;}\\ \text{end for;}\\ \text{output } (\beta_0, \beta_1, \cdots, \beta_d);\\ \end{array}$$

$$\begin{array}{l} \textbf{Definition : A } (k+1)\text{-simplex } \sigma^i \text{ is positive if it is contained in a } (k+1)\text{-cycle in } K^i\\ \text{ bestroy a } k\text{-cycle in } K^i \end{array}$$

 $\beta_k(K) = \sharp$ (positive simplices)  $- \sharp$ (negative simplices)

#### From homology to persistent homology

**Input :** A filtration of a simplicial complex  $\emptyset = K^0 \subset K^1 \subset \cdots \subset K^m = K$ , s. t.  $K^{i+1} = K^i \cup \sigma^{i+1}$  where  $\sigma^{i+1}$  is a simplex of K.

**Output :** The Betti numbers  $\beta_0, \beta_1, \cdots, \beta_d$  of K.

```
\begin{split} \beta_0 &= \beta_1 = \dots = \beta_d = 0;\\ \text{for } i &= 1 \text{ to } m\\ k &= \dim \sigma^i - 1;\\ \text{if } \sigma^i \text{ is contained in a } (k+1)\text{-cycle in } K^i\\ \text{ then } \beta_{k+1} &= \beta_{k+1} + 1;\\ \text{else } \beta_k &= \beta_k - 1;\\ \text{end if };\\ \text{end for };\\ \text{output } (\beta_0, \beta_1, \dots, \beta_d); \end{split}
```

The algorithm can be easily adapted to keep track of an homology basis and pairs positive simplices (birth of a new homological class) to negative simplices (death of an existing homology class).

Let  $K = (K_a \mid a \in \mathbf{R})$  be a finite filtered simplicial complex with N simplicies and let  $K_{a_1} \subset K_{a_2} \subset \cdots \subset K_{a_N}$  be the discrete filtration induced by the entering times of the simplices :  $K_{a_i} \setminus K_{a_{i-1}} = \sigma_{a_i}$ .

Let  $K = (K_a \mid a \in \mathbf{R})$  be a finite filtered simplicial complex with N simplicies and let  $K_{a_1} \subset K_{a_2} \subset \cdots \subset K_{a_N}$  be the discrete filtration induced by the entering times of the simplices :  $K_{a_i} \setminus K_{a_{i-1}} = \sigma_{a_i}$ .

Process the simplices according to their order of entrance in the filtration :

Let  $k = \dim \sigma_{a_i}$  (ie.  $\sigma_{a_i} = [v_0, \cdots, v_k]$ )

Let  $K = (K_a \mid a \in \mathbf{R})$  be a finite filtered simplicial complex with N simplicies and let  $K_{a_1} \subset K_{a_2} \subset \cdots \subset K_{a_N}$  be the discrete filtration induced by the entering times of the simplices :  $K_{a_i} \setminus K_{a_{i-1}} = \sigma_{a_i}$ .

Process the simplices according to their order of entrance in the filtration :

Let  $k = \dim \sigma_{a_i}$  (ie.  $\sigma_{a_i} = [v_0, \cdots, v_k]$ )

Case 1 : adding  $\sigma_{a_i}$  to  $K_{a_{i-1}}$  creates a new k-dimensional topological feature in  $K_{a_i}$  (new homology class in  $H_k$ ).



 $\Rightarrow$  the birth of a k-dim feature is registered.

Let  $K = (K_a \mid a \in \mathbf{R})$  be a finite filtered simplicial complex with N simplicies and let  $K_{a_1} \subset K_{a_2} \subset \cdots \subset K_{a_N}$  be the discrete filtration induced by the entering times of the simplices :  $K_{a_i} \setminus K_{a_{i-1}} = \sigma_{a_i}$ .

Process the simplices according to their order of entrance in the filtration :

Let  $k = \dim \sigma_{a_i}$  (ie.  $\sigma_{a_i} = [v_0, \cdots, v_k]$ )

Case 1 : adding  $\sigma_{a_i}$  to  $K_{a_{i-1}}$  creates a new k-dimensional topological feature in  $K_{a_i}$  (new homology class in  $H_k$ ).



 $\Rightarrow$  the birth of a k-dim feature is registered.

Case 2 : adding  $\sigma_{a_i}$  to  $K_{a_{i-1}}$  kills a (k-1)-dimensional topological feature in  $K_{a_i}$  (homology class in  $H_{k-1}$ ).



 $\Rightarrow$  persistence algo. pairs the simplex  $\sigma_{a_i}$ to the simplex  $\sigma_{a_j}$  that gave birth to the killed feature.

Process the simplices according to their order of entrance in the filtration :

Let 
$$k = \dim \sigma_{a_i}$$
 (ie.  $\sigma_{a_i} = [v_0, \cdots, v_k]$ )

Case 1 : adding  $\sigma_{a_i}$  to  $K_{a_{i-1}}$  creates a new k-dimensional topological feature in  $K_{a_i}$  (new homology class in  $H_k$ ).



 $\Rightarrow$  the birth of a k-dim feature is registered.

Case 2 : adding  $\sigma_{a_i}$  to  $K_{a_{i-1}}$  kills a (k-1)-dimensional topological feature in  $K_{a_i}$  (homology class in  $H_{k-1}$ ).



 $\Rightarrow$  persistence algo. pairs the simplex  $\sigma_{a_i}$  to the simplex  $\sigma_{a_j}$  that gave birth to the killed feature.

 $\rightarrow (\sigma_{a_j}, \sigma_{a_i})$  : persistence pair

 $\rightarrow$   $(a_j, a_i) \in \mathbb{R}^2$  : point in the persistence diagram

Process the simplices according to their order of entrance in the filtration :

Let 
$$k = \dim \sigma_{a_i}$$
 (ie.  $\sigma_{a_i} = [v_0, \cdots, v_k]$ )

Case 1 : adding  $\sigma_{a_i}$  to  $K_{a_{i-1}}$  creates a new k-dimensional topological feature in  $K_{a_i}$  (new homology class in  $H_k$ ).



 $\Rightarrow$  the birth of a k-dim feature is registered.

**Important to remember :** the persistence pairs are determined by the order on the simplices; the corresponding  $\rightarrow (a_i, a_i) \in \mathbb{R}^2$ : point in the points in the diagrams are determined by the indices.

Case 2 : adding  $\sigma_{a_i}$  to  $K_{a_{i-1}}$  kills a (k-1)-dimensional topological feature in  $K_{a_i}$  (homology class in  $H_{k-1}$ ).



 $\Rightarrow$  persistence algo. pairs the simplex  $\sigma_{a_i}$ to the simplex  $\sigma_{a_i}$  that gave birth to the killed feature.

 $\rightarrow (\sigma_{a_i}, \sigma_{a_i})$  : persistence pair

persistence diagram

#### The persistence algorithm : matrix version

**Input** :  $\emptyset = K^0 \subset K^1 \subset \cdots \subset K^m = K$  a *d*-dimensional filtration of a simplicial complex K s. t.  $K^{i+1} = K^i \cup \sigma^{i+1}$  where  $\sigma^{i+1}$  is a simplex of K.

The matrix of the boundary operator :



-  $M = (m_{ij})_{i,j=1,\dots,m}$  with coefficient in  $\mathbb{Z}/2$  defined by  $m_{ij} = 1$  if  $\sigma^i$  is a face of  $\sigma^j$  and  $m_{ij} = 0$  otherwise

— For any column  $C_j$ , l(j) is defined by

$$(i = l(j)) \Leftrightarrow (m_{ij} = 1 \text{ and } m_{i'j} = 0 \quad \forall i' > i)$$

#### The persistence algorithm : matrix version

**Input**:  $\emptyset = K^0 \subset K^1 \subset \cdots \subset K^m = K$  a *d*-dimensional filtration of a simplicial complex K s. t.  $K^{i+1} = K^i \cup \sigma^{i+1}$  where  $\sigma^{i+1}$  is a simplex of K.

Compute the matrix of the boundary operator MFor j = 0 to mWhile (there exists j' < j such that l(j') == l(j))  $C_j = C_j + C_{j'} \mod(2)$ ; End while End for Output the pairs (l(j), j);

**Remark :** The worst case complexity of the algorithm is  $O(m^3)$  but much lower in most practical cases.

#### The persistence algorithm : matrix version

A simple example :



# Persistent homology with the GUDHI library



GUDHI :

- a C++/Python open source software library for TDA,
- a developers team, an editorial board, open to external contributions,
- provides state-of-the-art TDA data structures and algorithms : design of filtrations, computation of pre-defined filtrations, persistence diagrams,...
- algorithms and tools for TDA and ML.

# If there is some time left...

**Definition :** A persistence module  $\mathbb{V}$  is an indexed family of vector spaces  $(V_a \mid a \in \mathbb{R})$  and a doubly-indexed family of linear maps  $(v_a^b : V_a \to V_b \mid a \leq b)$  which satisfy the composition law  $v_b^c \circ v_a^b = v_a^c$  whenever  $a \leq b \leq c$ , and where  $v_a^a$  is the identity map on  $V_a$ .

#### Examples :

- Let  $\mathbb{S}$  be a filtered simplicial complex. If  $V_a = H(\mathbb{S}_a)$  and  $v_a^b : H(\mathbb{S}_a) \to H(\mathbb{S}_b)$ is the linear map induced by the inclusion  $\mathbb{S}_a \hookrightarrow \mathbb{S}_b$  then  $(H(\mathbb{S}_a) \mid a \in \mathbb{R})$  is a persistence module.
- Given a metric space  $(X, d_X)$ , H(Rips(X)) is a persistence module.
- If  $f: X \to \mathbf{R}$  is a function, then the filtration defined by the sublevel sets of f,  $\mathbb{F}_a = f^{-1}((-\infty, a])$ , induces a persistence module at homology level.

**Definition :** A persistence module  $\mathbb{V}$  is an indexed family of vector spaces  $(V_a \mid a \in \mathbb{R})$  and a doubly-indexed family of linear maps  $(v_a^b : V_a \to V_b \mid a \leq b)$  which satisfy the composition law  $v_b^c \circ v_a^b = v_a^c$  whenever  $a \leq b \leq c$ , and where  $v_a^a$  is the identity map on  $V_a$ .

**Definition :** A persistence module  $\mathbb{V}$  is q-tame if for any a < b,  $v_a^b$  has a finite rank.

**Theorem** :[C., Cohen-Steiner, Glisse, Guibas, Oudot - SoCG'09], [C., de Silva, Glisse, Oudot 12]

q-tame persistence modules have well-defined persistence diagrams.

**Definition :** A persistence module  $\mathbb{V}$  is an indexed family of vector spaces  $(V_a \mid a \in \mathbb{R})$  and a doubly-indexed family of linear maps  $(v_a^b : V_a \to V_b \mid a \leq b)$  which satisfy the composition law  $v_b^c \circ v_a^b = v_a^c$  whenever  $a \leq b \leq c$ , and where  $v_a^a$  is the identity map on  $V_a$ .

**Definition :** A persistence module  $\mathbb{V}$  is q-tame if for any a < b,  $v_a^b$  has a finite rank.

Theorem :[C., Cohen-Steiner, Glisse, Guibas, Oudot - SoCG'09], [C., de Silva, Glisse, Oudot 12] q-tame persistence modules have well-defined persistence diagrams.

**Example :** Let X be a precompact metric space. Then H(Rips(X)) is q-tame.

Recall that a metric space  $(X, \rho)$  is precompact if for any  $\epsilon > 0$  there exists a finite subset  $F_{\epsilon} \subset X$  such that  $d_{H}(X, F_{\epsilon}) < \epsilon$  (i.e.  $\forall x \in X, \exists p \in F_{\epsilon} \text{ s.t. } \rho(x, p) < \epsilon$ ).

**Definition :** A persistence module  $\mathbb{V}$  is an indexed family of vector spaces  $(V_a \mid a \in \mathbb{R})$  and a doubly-indexed family of linear maps  $(v_a^b : V_a \to V_b \mid a \leq b)$  which satisfy the composition law  $v_b^c \circ v_a^b = v_a^c$  whenever  $a \leq b \leq c$ , and where  $v_a^a$  is the identity map on  $V_a$ .

A homomorphism of degree  $\epsilon$  between two persistence modules  $\mathbb U$  and  $\mathbb V$  is a collection  $\Phi$  of linear maps

$$(\phi_a: U_a \to V_{a+\epsilon} \mid a \in \mathbf{R})$$

such that  $v_{a+\epsilon}^{b+\epsilon} \circ \phi_a = \phi_b \circ u_a^b$  for all  $a \leq b$ .



An  $\varepsilon$ -interleaving between  $\mathbb{U}$  and  $\mathbb{V}$  is specified by two homomorphisms of degree  $\epsilon \Phi : \mathbb{U} \to \mathbb{V}$  and  $\Psi : \mathbb{V} \to \mathbb{U}$  s.t.  $\Phi \circ \Psi$  and  $\Psi \circ \Phi$  are the "shifts" of degree  $2\epsilon$  between  $\mathbb{U}$  and  $\mathbb{V}$ .



**Definition :** A persistence module  $\mathbb{V}$  is an indexed family of vector spaces  $(V_a \mid a \in \mathbb{R})$  and a doubly-indexed family of linear maps  $(v_a^b : V_a \to V_b \mid a \leq b)$  which satisfy the composition law  $v_b^c \circ v_a^b = v_a^c$  whenever  $a \leq b \leq c$ , and where  $v_a^a$  is the identity map on  $V_a$ .

Stability Thm [C., Cohen-Steiner, Glisse, Guibas, Oudot - SoCG '09], [C., de Silva, Glisse Oudot 12] If U and V are q-tame and  $\epsilon$ -interleaved for some  $\epsilon \geq 0$  then

 $d_B(\mathsf{dgm}(\mathbb{U}),\mathsf{dgm}(\mathbb{V})) \leq \epsilon$ 

**Definition :** A persistence module  $\mathbb{V}$  is an indexed family of vector spaces  $(V_a \mid a \in \mathbb{R})$  and a doubly-indexed family of linear maps  $(v_a^b : V_a \to V_b \mid a \leq b)$  which satisfy the composition law  $v_b^c \circ v_a^b = v_a^c$  whenever  $a \leq b \leq c$ , and where  $v_a^a$  is the identity map on  $V_a$ .

Stability Thm [C., Cohen-Steiner, Glisse, Guibas, Oudot - SoCG '09], [C., de Silva, Glisse Oudot 12] If U and V are q-tame and  $\epsilon$ -interleaved for some  $\epsilon \geq 0$  then

 $d_B(\mathsf{dgm}(\mathbb{U}),\mathsf{dgm}(\mathbb{V})) \leq \epsilon$ 

**Exercise :** Show the stability theorem for (tame) functions : let X be a topological space and let  $f, g : X \to \mathbb{R}$  be two *tame* functions. Then

$$\mathsf{d}_{\mathrm{B}}(\mathrm{D}_f,\mathrm{D}_g) \le \|f-g\|_{\infty}.$$

**Definition :** A persistence module  $\mathbb{V}$  is an indexed family of vector spaces  $(V_a \mid a \in \mathbb{R})$  and a doubly-indexed family of linear maps  $(v_a^b : V_a \to V_b \mid a \leq b)$  which satisfy the composition law  $v_b^c \circ v_a^b = v_a^c$  whenever  $a \leq b \leq c$ , and where  $v_a^a$  is the identity map on  $V_a$ .

Stability Thm [C., Cohen-Steiner, Glisse, Guibas, Oudot - SoCG '09], [C., de Silva, Glisse Oudot 12]

If  $\mathbb U$  and  $\mathbb V$  are q-tame and  $\epsilon\text{-interleaved}$  for some  $\epsilon\geq 0$  then

 $d_B(\mathsf{dgm}(\mathbb{U}),\mathsf{dgm}(\mathbb{V})) \leq \epsilon$ 

**Strategy** : build filtrations that induce **q-tame** homology persistence modules and that turn out to be  $\epsilon$ -interleaved when the considered spaces/functions are  $O(\epsilon)$ -close.

# A few applications of persistence

# Persistence-based clustering

Combine a mode seeking approach with (0-dim) persistence computation.

[C.,Guibas,Oudot,Skraba - J. ACM 2013]



#### Input :

1. A finite set X of observations (point cloud with coordinates or pairwise distance matrix),

2. A real valued function f defined on the observations (e.g. density estimate).

 ${\bf Goal}$  : Partition the data according to the basins of attraction of the peaks of f

# Persistence-based clustering

Combine a mode seeking approach with (0-dim) persistence computation. [C.,Guibas,Oudot,Skraba - J. ACM 2013]



- 1. Build a neighborhing graph G on top of X.
- 2. Compute the (0-dim) persistence of f to identify prominent peaks  $\rightarrow$  number of clusters (union-find algorithm).
Combine a mode seeking approach with (0-dim) persistence computation. [C.,Guibas,Oudot,Skraba - J. ACM 2013]



- 1. Build a neighborhing graph G on top of X.
- 2. Compute the (0-dim) persistence of f to identify prominent peaks  $\rightarrow$  number of clusters (union-find algorithm).

Combine a mode seeking approach with (0-dim) persistence computation. [C.,Guibas,Oudot,Skraba - J. ACM 2013]



- 1. Build a neighborhing graph G on top of X.
- 2. Compute the (0-dim) persistence of f to identify prominent peaks  $\rightarrow$  number of clusters (union-find algorithm).

Combine a mode seeking approach with (0-dim) persistence computation.

[C.,Guibas,Oudot,Skraba - J. ACM 2013]



- 1. Build a neighborhing graph G on top of X.
- 2. Compute the (0-dim) persistence of f to identify prominent peaks  $\rightarrow$  number of clusters (union-find algorithm).

3. Chose a threshold  $\tau > 0$  and use the persistence algorithm to merge components with prominence less than  $\tau$ .

Combine a mode seeking approach with (0-dim) persistence computation.

[C.,Guibas,Oudot,Skraba - J. ACM 2013]



**Complexity of the algorithm** :  $O(n \log n)$ 

#### **Theoretical guarantees :**

- Stability of the number of clusters (w.r.t. perturbations of X and f).
- Partial stability of clusters : well identified stable parts in each cluster.

## Application to non-rigid shape segmentation

[Skraba, Ovsjanikov, C., Guibas, NORDIA 10]



**Problem :** some part of clusters are unstable  $\rightarrow$  dirty segments

## Application to non-rigid shape segmentation

[Skraba, Ovsjanikov, C., Guibas, NORDIA 10]



**Problem :** some part of clusters are unstable  $\rightarrow$  dirty segments

Idea :

- Run the persistence based algorithm several times on random perturbations of f (size bounded by the "persistence" gap).

- Partial stability of clusters allows to establish correspondences between clusters across the different runs  $\rightarrow$  for any  $x \in X$ , a vector giving the probability for x to belong to each cluster.

#### Application to non-rigid shape segmentation

[Skraba, Ovsjanikov, C., Guibas, NORDIA 10]





Topology-based unsupervised classification and anomaly detection on cytometry data for medical diagnosis [M. Glisse, L. Pujol et al 2022]



An innovative start-up specialized in biological diagnosis from cytometry data.



**Objective :** unsupervised learning in large point clouds (several millions) in medium/high dimensions ( $\approx 4 \rightarrow 80$ )

**Applications :** medical diagnosis from blood samples (1 point = 1 blood cell)

**Methodology :** TDA based approaches, combined with dim. reduction methods to identify relevant patterns and subsamples.

## The problem of representation of persistence



## A zoo of representations of persistence

(non exhaustive list - see also Gudhi representations)

#### • Collections of 1D functions

 $\rightarrow$  landscapes [Bubenik 2012]

 $\rightarrow$  Betti curves [Umeda 2017]

• discrete measures : (interesting statistical properties [Chazal, Divol 2018])

 $\rightarrow$  persistence images [Adams et al 2017]

 $\rightarrow$  convolution with Gaussian kernel [Reininghaus et al. 2015] [Chepushtanova et al. 2015] [Kusano Fukumisu Hiraoka 2016-17] [Le Yamada 2018]

 $\rightarrow$  sliced on lines [Carrière Oudot Cuturi 2017]

- finite metric spaces [Carrière Oudot Ovsjanikov 2015]
- polynomial roots or evaluations [Di Fabio Ferri 2015] [Kališnik 2016]

[Adams et al, JMLR 2017]



For  $K : \mathbb{R}^2 \to \mathbb{R}$  a kernel and H a bandwidth matrix (e.g. a symmetric positive definite matrix), pose for  $u \in \mathbb{R}^2$ ,  $K_H(u) = |H|^{-1/2} K(H^{-1/2} \cdot u)$ 

For  $D = \sum_i \delta_{p_i}$  a diagram,  $K : \mathbb{R}^2 \to \mathbb{R}$  a kernel, H a bandwidth matrix and  $w : \mathbb{R}^2 \to \mathbb{R}_+$  a weight function, one defines the persistence surface of Dwith kernel K and weight function w by :

$$\forall u \in \mathbb{R}^2, \ \rho(D)(u) = \sum_i w(p_i) K_H(u - p_i) = D(wK_H(u - \cdot))$$

## Persistence diagrams as discrete measures



Motivations :

- The space of measures is much nicer that the space of P. D. !
- In the general algebraic persistence theory, persistence diagrams naturally appears as discrete measures in the plane.

[C., de Silva, Glisse, Oudot 16]

• Many persistence representations can be expressed as

$$D(f) = \sum_{p \in D} f(p) = \int f dD$$

for well-chosen functions  $f : \mathbb{R}^2 \to \mathcal{H}$ .

## Persistence diagrams as discrete measures



Benefits :

- Interesting statistical properties
- Data-driven selection of well-adapted representations (supervised and unsupervised, coming with guarantees)
- Optimisation of persistence-based functions

Many tools available and implemented in the GUDHI library

Let n > 0 be an integer,  $\mathcal{F}_n$ : the collection of non-empty subsets of  $\{1, \ldots, n\}$ , M: a real analytic compact d-dim. connected manifold (poss. with boundary).

Filtering function :

$$\varphi = (\varphi[J])_{J \in \mathcal{F}_n} : M^n \to \mathbb{R}^{|\mathcal{F}_n|}$$

satisfiying the following conditions :

(K2) Invariance by permutation : For  $J \in \mathcal{F}_n$  and for  $(x_1, \ldots, x_n) \in M^n$ , if  $\tau$  is a permutation of the entries having support included in J, then  $\varphi[J](x_{\tau(1)}, \ldots, x_{\tau(n)}) = \varphi[J](x_1, \ldots, x_n).$ 

(K3) Monotony : For  $J \subset J' \in \mathcal{F}_n$ ,  $\varphi[J] \leq \varphi[J']$ .

Given  $x = (x_1, \dots, x_n)$ ,  $\varphi(x)$  induces an order on the faces of the simplex with n vertices that is a filtration  $\mathcal{K}(x)$ :

$$\forall J \in \mathcal{F}_n, \ J \in \mathcal{K}(x,r) \Longleftrightarrow \varphi[J](x) \le r.$$

Not : for  $x = (x_1, \ldots, x_n) \in M^n$  and for J a simplex,  $x(J) := (x_j)_{j \in J}$ 

- (K1) Absence of interaction : For  $J \in \mathcal{F}_n$ ,  $\varphi[J](x)$  only depends on x(J).
- (K2) Invariance by permutation : For  $J \in \mathcal{F}_n$  and for  $(x_1, \ldots, x_n) \in M^n$ , if  $\tau$  is a permutation of the entries having support included in J, then  $\varphi[J](x_{\tau(1)}, \ldots, x_{\tau(n)}) = \varphi[J](x_1, \ldots, x_n).$
- (K3) Monotony : For  $J \subset J' \in \mathcal{F}_n$ ,  $\varphi[J] \leq \varphi[J']$ .
- (K4) Compatibility: For a simplex  $J \in \mathcal{F}_n$  and for  $j \in J$ , if  $\varphi[J](x_1, \ldots, x_n)$  is not a function of  $x_j$  on some open set U of  $M^n$ , then  $\varphi[J] \equiv \varphi[J \setminus \{j\}]$  on U.
- (K5) Smoothness : The function  $\varphi$  is subanalytic and the gradient of each of its entries (which is defined a.s.e.) is non vanishing a.s.e..

Let n > 0 be an integer,  $\mathcal{F}_n$ : the collection of non-empty subsets of  $\{1, \ldots, n\}$ , M: a real analytic compact d-dim. connected manifold (poss. with boundary).

Filtering function :

$$\varphi = (\varphi[J])_{J \in \mathcal{F}_n} : M^n \to \mathbb{R}^{|\mathcal{F}_n|}$$

satisfiying the following conditions :

(K2) Invariance by permutation : For  $J \in \mathcal{F}_n$  and for  $(x_1, \ldots, x_n) \in M^n$ , if  $\tau$  is a permutation of the entries having support included in J, then  $\varphi[J](x_{\tau(1)}, \ldots, x_{\tau(n)}) = \varphi[J](x_1, \ldots, x_n).$ 

(K3) Monotony : For  $J \subset J' \in \mathcal{F}_n$ ,  $\varphi[J] \leq \varphi[J']$ .

Given  $x = (x_1, \dots, x_n)$ ,  $\varphi(x)$  induces an order on the faces of the simplex with n vertices that is a filtration  $\mathcal{K}(x)$ :

$$\forall J \in \mathcal{F}_n, \ J \in \mathcal{K}(x,r) \Longleftrightarrow \varphi[J](x) \le r.$$

Not : for  $x = (x_1, \ldots, x_n) \in M^n$  and for J a simplex,  $x(J) := (x_j)_{j \in J}$ 

- (K1) Absence of interaction : For  $J \in \mathcal{F}_n$ ,  $\varphi[J](x)$  only depends on x(J).
- (K2) Invariance by permutation : For  $J \in \mathcal{F}_n$  and for  $(x_1, \ldots, x_n) \in M^n$ , if  $\tau$  is a permutation of the entries having support included in J, then  $\varphi[J](x_{\tau(1)}, \ldots, x_{\tau(n)}) = \varphi[J](x_1, \ldots, x_n).$
- (K3) Monotony : For  $J \subset J' \in \mathcal{F}_n$ ,  $\varphi[J] \leq \varphi[J']$ .
- (K4) Compatibility: For a simplex  $J \in \mathcal{F}_n$  and for  $j \in J$ , if  $\varphi[J](x_1, \ldots, x_n)$  is not a function of  $x_j$  on some open set U of  $M^n$ , then  $\varphi[J] \equiv \varphi[J \setminus \{j\}]$  on U.
- (K5) Smoothness : The function  $\varphi$  is subanalytic and the gradient of each of its entries (which is defined a.s.e.) is non vanishing a.s.e..

- (K1) Absence of interaction : For  $J \in \mathcal{F}_n$ ,  $\varphi[J](x)$  only depends on x(J).
- (K2) Invariance by permutation : For  $J \in \mathcal{F}_n$  and for  $(x_1, \ldots, x_n) \in M^n$ , if  $\tau$  is a permutation of the entries having support included in J, then  $\varphi[J](x_{\tau(1)}, \ldots, x_{\tau(n)}) = \varphi[J](x_1, \ldots, x_n).$
- (K3) Monotony : For  $J \subset J' \in \mathcal{F}_n$ ,  $\varphi[J] \leq \varphi[J']$ .
- (K4) Compatibility : For a simplex  $J \in \mathcal{F}_n$  and for  $j \in J$ , if  $\varphi[J](x_1, \ldots, x_n)$  is not a function of  $x_j$  on some open set U of  $M^n$ , then  $\varphi[J] \equiv \varphi[J \setminus \{j\}]$  on U.
- (K5') Smoothness : The function  $\varphi$  is subanalytic and the gradient of each of its entries J of size larger than 1 is non vanishing a.e. and for  $J = \{j\}$ ,  $\varphi[\{j\}] \equiv 0$ .

- (K1) Absence of interaction : For  $J \in \mathcal{F}_n$ ,  $\varphi[J](x)$  only depends on x(J).
- (K2) Invariance by permutation : For  $J \in \mathcal{F}_n$  and for  $(x_1, \ldots, x_n) \in M^n$ , if  $\tau$  is a permutation of the entries having support included in J, then  $\varphi[J](x_{\tau(1)}, \ldots, x_{\tau(n)}) = \varphi[J](x_1, \ldots, x_n).$
- (K3) Monotony : For  $J \subset J' \in \mathcal{F}_n$ ,  $\varphi[J] \leq \varphi[J']$ .
- (K4) Compatibility : For a simplex  $J \in \mathcal{F}_n$  and for  $j \in J$ , if  $\varphi[J](x_1, \ldots, x_n)$  is not a function of  $x_j$  on some open set U of  $M^n$ , then  $\varphi[J] \equiv \varphi[J \setminus \{j\}]$  on U.
- (K5') Smoothness : The function  $\varphi$  is subanalytic and the gradient of each of its entries J of size larger than 1 is non vanishing a.e. and for  $J = \{j\}$ ,  $\varphi[\{j\}] \equiv 0$ .

- (K1) Absence of interaction : For  $J \in \mathcal{F}_n$ ,  $\varphi[J](x)$  only depends on x(J).
- (K2) Invariance by permutation : For  $J \in \mathcal{F}_n$  and for  $(x_1, \ldots, x_n) \in M^n$ , if  $\tau$  is a permutation of the entries having support included in J, then  $\varphi[J](x_{\tau(1)}, \ldots, x_{\tau(n)}) = \varphi[J](x_1, \ldots, x_n).$
- (K3) Monotony : For  $J \subset J' \in \mathcal{F}_n$ ,  $\varphi[J] \leq \varphi[J']$ .
- (K4) Compatibility: For a simplex  $J \in \mathcal{F}_n$  and for  $j \in J$ , if  $\varphi[J](x_1, \ldots, x_n)$  is not a function of  $x_j$  on some open set U of  $M^n$ , then  $\varphi[J] \equiv \varphi[J \setminus \{j\}]$  on U.
- (K5') Smoothness : The function  $\varphi$  is subanalytic and the gradient of each of its entries J of size larger than 1 is non vanishing a.e. and for  $J = \{j\}$ ,  $\varphi[\{j\}] \equiv 0$ .

- (K1) Absence of interaction : For  $J \in \mathcal{F}_n$ ,  $\varphi[J](x)$  only depends on x(J),
- (K2) Invariance by permutation : For  $J \in \mathcal{F}_n$  and for  $(x_1, \ldots, x_n) \in M^n$ , if  $\tau$  is a permutation of the entries having support included in J, then  $\varphi[J](x_{\tau(1)}, \ldots, x_{\tau(n)}) = \varphi[J](x_1, \ldots, x_n).$
- (K3) Monotony : For  $J \subset J' \in \mathcal{F}_n$ ,  $\varphi[J] \leq \varphi[J']$ .
- (K4) Compatibility: For a simplex  $J \in \mathcal{F}_n$  and for  $j \in J$ , if  $\varphi[J](x_1, \ldots, x_n)$  is not a function of  $x_j$  on some open set U of  $M^n$ , then  $\varphi[J] \equiv \varphi[J \setminus \{j\}]$  on U.
- (K5') Smoothness : The function  $\varphi$  is subanalytic and the gradient of each of its entries J of size larger than 1 is non vanishing a.e. and for  $J = \{j\}$ ,  $\varphi[\{j\}] \equiv 0$ .

- (K1) Absence of interaction : For  $J \in \mathcal{F}_n$ ,  $\varphi[J](x)$  only depends on x(J).
- (K2) Invariance by permutation : For  $J \in \mathcal{F}_n$  and for  $(x_1, \ldots, x_n) \in M^n$ , if  $\tau$  is a permutation of the entries having support included in J, then  $\varphi[J](x_{\tau(1)}, \ldots, x_{\tau(n)}) = \varphi[J](x_1, \ldots, x_n).$
- (K3) Monotony : For  $J \subset J' \in \mathcal{F}_n$ ,  $\varphi[J] \leq \varphi[J']$ .
- (K4) Compatibility : For a simplex  $J \in \mathcal{F}_n$  and for  $j \in J$ , if  $\varphi[J](x_1, \ldots, x_n)$  is not a function of  $x_j$  on some open set U of  $M^n$ , then  $\varphi[J] \equiv \varphi[J \setminus \{j\}]$  on U.
- (K5') Smoothness : The function  $\varphi$  is subanalytic and the gradient of each of its entries J of size larger than 1 is non vanishing a.e. and for  $J = \{j\}$ ,  $\varphi[\{j\}] \equiv 0$ .

- (K1) Absence of interaction : For  $J \in \mathcal{F}_n$ ,  $\varphi[J](x)$  only depends on x(J).
- (K2) Invariance by permutation : For  $J \in \mathcal{F}_n$  and for  $(x_1, \ldots, x_n) \in M^n$ , if  $\tau$  is a permutation of the entries having support included in J, then  $\varphi[J](x_{\tau(1)}, \ldots, x_{\tau(n)}) = \varphi[J](x_1, \ldots, x_n).$
- (K3) Monotony : For  $J \subset J' \in \mathcal{F}_n$ ,  $\varphi[J] \leq \varphi[J']$ .
- (K4) Compatibility : For a simplex  $J \in \mathcal{F}_n$  and for  $j \in J$ , if  $\varphi[J](x_1, \ldots, x_n)$  is not a function of  $x_j$  on some open set U of  $M^n$ , then  $\varphi[J] \equiv \varphi[J \setminus \{j\}]$  on U.
- (K5') Smoothness : The function  $\varphi$  is subanalytic and the gradient of each of its entries J of size larger than 1 is non vanishing a.e. and for  $J = \{j\}$ ,  $\varphi[\{j\}] \equiv 0$ .

## The density of expected persistence diagrams

# **Theorem :** Fix $n \ge 1$ . Assume that : • M is a real analytic compact d-dimensional connected submanifold possibly with boundary, • X is a random variable on $M^n$ having a density with respect to the Haussdorf measure $\mathcal{H}_{dn}$ , • $\mathcal{K}$ satisfies the assumptions (K1)-(K5). Then, for $s \ge 0$ , $E[D_s[\mathcal{K}(\mathbb{X})]]$ has a density with respect to the Lebesgue measure on the half plane $\Delta = \{(b, d) \in \mathbb{R}^2 : b \leq d\}.$

## The density of expected persistence diagrams

#### **Theorem :** Fix $n \ge 1$ . Assume that :

- *M* is a real analytic compact *d*-dimensional connected riemannian manifold possibly with boundary,
- X is a random variable on  $M^n$  having a density with respect to the Haussdorf measure  $\mathcal{H}_{dn}$ ,
- $\mathcal{K}$  satisfies the assumptions (K1)-(K4) and (K5').

Then, for  $s \ge 1$ ,  $E[D_s[\mathcal{K}(\mathbb{X})]]$  has a density with respect to the Lebesgue measure on  $\Delta$ . Moreover,  $E[D_0[\mathcal{K}(\mathbb{X})]]$  has a density with respect to the Lebesgue measure on the vertical line  $\{0\} \times [0, \infty)$ .

## The density of expected persistence diagrams

#### **Theorem :** Fix $n \ge 1$ . Assume that :

- *M* is a real analytic compact *d*-dimensional connected riemannian manifold possibly with boundary,
- X is a random variable on  $M^n$  having a density with respect to the Haussdorf measure  $\mathcal{H}_{dn}$ ,
- $\mathcal{K}$  satisfies the assumptions (K1)-(K4) and (K5').

Then, for  $s \ge 1$ ,  $E[D_s[\mathcal{K}(\mathbb{X})]]$  has a density with respect to the Lebesgue measure on  $\Delta$ . Moreover,  $E[D_0[\mathcal{K}(\mathbb{X})]]$  has a density with respect to the Lebesgue measure on the vertical line  $\{0\} \times [0, \infty)$ .

**Theorem [smoothness]**: Under the assumption of previous theorem, if moreover  $\mathbb{X} \in M^n$  has a density of class  $C^k$  with respect to  $\mathcal{H}_{nd}$ . Then, for  $s \geq 0$ , the density of  $E[D_s[\mathcal{K}(\mathbb{X})]]$  is of class  $C^k$ .

## Sketch of proof

**1.** There exists a partition of the complement of a (subanalytic) set of measure 0 in  $M^n$  by open sets  $V_1, \dots, V_R$  such that :

- the order of the simplices of  $\mathcal{K}(x)$  is constant on each  $V_r$ ,
- for any  $r=1,\cdots,R$ , and any  $x\in V_r$ ,

$$D_s[\mathcal{K}(x)] = \sum_{i=1}^{N_r} \delta_{\mathbf{r}_i}$$

with  $\mathbf{r}_i = (\varphi[J_{i_1}](x), \varphi[J_{i_2}](x))$  where  $N_r$ ,  $J_{i_1}, J_{i_2}$  only depends on  $V_r$ .

•  $J_{i_1}, J_{i_2}$  can be chosen so that the differential of

$$\Phi_{ir}: x \in V_r \to \mathbf{r}_i = (\varphi[J_{i_1}](x), \varphi[J_{i_2}](x))$$

has maximal rank (2).

### Sketch of proof

2. The expected diagram can be written as

$$E[D_s[\mathcal{K}(\mathbb{X})]] = \sum_{r=1}^R E\left[\mathbb{1}\{\mathbb{X} \in V_r\} D_s[\mathcal{K}(\mathbb{X})]\right] = \sum_{r=1}^R E\left[\mathbb{1}\{\mathbb{X} \in V_r\} \sum_{i=1}^{N_r} \delta_{\mathbf{r}_i}\right]$$
$$= \sum_{r=1}^R \sum_{i=1}^{N_r} E\left[\mathbb{1}\{\mathbb{X} \in V_r\} \delta_{\mathbf{r}_i}\right]$$

### Sketch of proof

2. The expected diagram can be written as

$$E[D_{s}[\mathcal{K}(\mathbb{X})]] = \sum_{r=1}^{R} E\left[\mathbb{1}\{\mathbb{X} \in V_{r}\}D_{s}[\mathcal{K}(\mathbb{X})]\right] = \sum_{r=1}^{R} E\left[\mathbb{1}\{\mathbb{X} \in V_{r}\}\sum_{i=1}^{N_{r}} \delta_{\mathbf{r}_{i}}\right]$$
$$= \sum_{r=1}^{R} \sum_{i=1}^{N_{r}} E\left[\mathbb{1}\{\mathbb{X} \in V_{r}\}\delta_{\mathbf{r}_{i}}\right]$$
$$\mu_{ir}$$
3. Use the co-area formula :  
$$\mu_{ir}(B) = P(\Phi_{ir}(\mathbb{X}) \in B, \mathbb{X} \in V_{r})$$
$$= \int_{V_{r}} \mathbb{1}\{\Phi_{ir}(x) \in B\}\kappa(x)d\mathcal{H}_{nd}(x)$$
$$= \int_{U \in B} \int_{x \in \Phi_{ir}^{-1}(u)} (J\Phi_{ir}(x))^{-1}\kappa(x)d\mathcal{H}_{nd-2}(x)du.$$
Density of  $\mu_{ir}$ 

### The Hausdorff measure and the co-area formula

**Definition :** Let k be a non-negative number. For  $A \subset \mathbb{R}^D$ , and  $\delta > 0$ , consider

$$\mathcal{H}_k^{\delta}(A) := \inf \left\{ \sum_i \operatorname{diam}(U_i)^k, A \subset \bigcup_i U_i \text{ and } \operatorname{diam}(U_i) < \delta \right\}.$$

The *k*-dimensional Haussdorf measure on  $\mathbb{R}^D$  of A is defined by  $\mathcal{H}_k(A) := \lim_{\delta \to 0} \mathcal{H}_k^{\delta}(A)$ .

**Theorem [Co-area formula] :** Let M (resp. N) be a smooth Riemannian manifold of dimension m (resp n). Assume that  $m \ge n$  and let  $\Phi : M \to N$  be a differentiable map. Denote by  $D\Phi$  the differential of  $\Phi$ . The Jacobian of  $\Phi$  is defined by  $J\Phi = \sqrt{\det((D\Phi) \times (D\Phi)^t)}$ . For  $f : M \to N$  a positive measurable function, the following equality holds :

$$\int_{M} f(x) J\Phi(x) d\mathcal{H}_{m}(x) = \int_{N} \left( \int_{x \in \Phi^{-1}(\{y\})} f(x) d\mathcal{H}_{m-n}(x) \right) d\mathcal{H}_{n}(y).$$

[Adams et al, JMLR 2017]



For  $K : \mathbb{R}^2 \to \mathbb{R}$  a kernel and H a bandwidth matrix (e.g. a symmetric positive definite matrix), pose for  $u \in \mathbb{R}^2$ ,  $K_H(z) = |H|^{-1/2} K(H^{-1/2} \cdot u)$ 

For  $D = \sum_i \delta_{\mathbf{r}_i}$  a diagram,  $K : \mathbb{R}^2 \to \mathbb{R}$  a kernel, H a bandwidth matrix and  $w : \mathbb{R}^2 \to \mathbb{R}_+$  a weight function, one defines the persistence surface of D with kernel K and weight function w by :

$$\forall z \in \mathbb{R}^2, \ \rho(D)(u) = \sum_i w(\mathbf{r}_i) K_H(u - \mathbf{r}_i) = D(wK_H(u - \cdot))$$

[Adams et al, JMLR 2017]



For  $K : \mathbb{R}^2 \to \mathbb{R}$  a kernel and H a bandwidth matrix (e.g. a symmetric positive definite matrix), pose for  $u \in \mathbb{R}^2$ ,  $K_H(z) = |H|^{-1/2} K(H^{-1/2} \cdot u)$ 

For  $D = \sum_i \delta_{\mathbf{r}_i}$  a diagram,  $K : \mathbb{R}^2 \to \mathbb{R}$  a kernel, H a bandwidth matrix and  $w : \mathbb{R}^2 \to \mathbb{R}_+$  a weight function, one defines the persistence surface of D with kernel K and weight function w by :

$$\forall z \in \mathbb{R}^2, \ \rho(D)(u) = \sum_i w(\mathbf{r}_i) K_H(u - \mathbf{r}_i) = D(wK_H(u - \cdot))$$

 $\Rightarrow$  persistence surfaces can be seen as kernel estimates of  $E[D_s[\mathcal{K}(\mathbb{X})]]$ .



The realization of 3 different processes

The overlay of 40 different persistence diagrams



The persistence images with weight function  $w(\mathbf{r}) = (r_2 - r_1)^3$  and bandwith selected using cross-validation.



## Thank you for your attention !