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What is Topological Data Analysis (TDA) ?

Modern data carry complex, but important, geometric/topological structure !

[Sensors (Sysnav courtesy)]
[Cell population -

cytometry - MetaFora
courtesy]

[Porous material (IFPEN courtesy)]



What is Topological Data Analysis (TDA) ?

Topological Data Analysis (TDA) is a recent field whose aim is to :

• infer relevant topological and geometric features from complex data,
• take advantage of topological/geometric information for further Data

Analysis, Machine Learning and AI tasks :
- using topological features in ML pipelines,
- taking advantage of topological information to improve ML pipelines.

Data

Topol. features
(e.g. persistence)



A classical TDA pipeline
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1. Build a multiscale topol. structure on top
of data : filtrations.

2. Compute multiscale topol. signatures :
persistent homology

3. Take advantage of the signature for fur-
ther Machine Learning and AI tasks :
Statistical aspects and representations of
persistence

Representations of
persistence

Machine
Learning / AI

(Discrete) metric space
metric space + proba. measure



Persistent homology

Starting with a few examples

• 90′s : size theory (P. Frosini et al), framed Morse complex and stability (S.A. Barannikov).
• 2002− 2005 : persistent homology (H. Edelsbrunner et al, Carlsson et al).
• important mathematical and practical developments since the 2000’s.

A general mathematical framework to encode the evolution of the topology (homo-
logy) of families of nested spaces (filtrations).
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• Tracking and encoding the evolution of the connected components (0-dimensional
homology) of the sublevel sets of a function

• The family of sublevel sets of a function is an example of filtration.
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• Tracking and encoding the evolution of the connected components (0-dimensional
homology) of the sublevel sets of a function

• The family of sublevel sets of a function is an example of filtration.

• Finite set of intervals (barcode) encodes births/deaths of topological features.

Persistent homology for functions
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• Tracking and encoding the evolution of the connected components (0-dimensional
homology) of the sublevel sets of a function

• The family of sublevel sets of a function is an example of filtration.

• Finite set of intervals (barcode) encodes births/deaths of topological features.

Persistent homology for functions
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Persistent homology for functions
z

M

a1
σ1

a2σ2

a3

a4
σ3

Tracking and encoding the evolution of the connected components (0-dimensional
homology) and cycles (1-dimensional homology) of the sublevel sets.

Homology : an algebraic way to rigorously formalize the notion of k-dimensional
cycles through a vector space (or a group), the homology group whose dimension is
the number of ”independent” cycles (the Betti number).
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What if f is slightly perturbed ?

Stability properties



The bottleneck distance between two diagrams D1 and D2 is

dB(D1, D2) = inf
γ∈Γ

sup
p∈D1

‖p− γ(p)‖∞

where Γ is the set of all the bijections between D1 and D2 and ‖p − q‖∞ =
max(|xp − xq|, |yp − yq|).

Distance between persistence diagrams

birth

death

∞

0

Multiplicity : 2

Add the diagonal

D1

D2
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What if f is slightly perturbed ?

Theorem (Stability) :
For any tame functions f, g : X→ R, dB(Df ,Dg) ≤ ‖f − g‖∞.

Stability properties

[Baranikov 94], [Cohen-Steiner, Edelsbrunner, Harer 05], [C., Cohen-Steiner, Glisse, Gui-
bas, Oudot - SoCG 09], [C., de Silva, Glisse, Oudot 12]



Point cloud

Persistent homology for point clouds

• Filtrations allow to construct “shapes” representing
the data in a multiscale way.

• Persistent homology : encode the evolution of the
topology across the scales → multi-scale topological
signatures.

• A general and well-studied mathematical framework.
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Persistence barcode
Point cloud

Persistent homology for point clouds

Persistence diagram

radius

• Filtrations allow to construct “shapes” representing
the data in a multiscale way.

• Persistent homology : encode the evolution of the
topology across the scales → multi-scale topological
signatures.

• A general and well-studied mathematical framework.



Simplicial complexes, filtrations,

homology and persistent homology



Simplicial complexes

Given a set P = {p0, . . . , pk} ⊂ Rd of k + 1 affinely independent points, the k-
dimensional simplex σ, or k-simplex for short, spanned by P is the set of convex
combinations

k∑
i=0

λi pi, with

k∑
i=0

λi = 1 and λi ≥ 0.

The points p0, . . . , pk are called the vertices of σ.

0-simplex :
vertex

1-simplex :
edge

2-simplex :
triangle

3-simplex :
tetrahedron

etc...



Simplicial complexes

A (finite) simplicial complex K in Rd is a (finite) collection of simplices such that :

1. any face of a simplex of K is a simplex of K,
2. the intersection of any two simplices of K is either empty or a common face

of both.

The underlying space of K, denoted by |K| ⊂ Rd is the union of the simplices of K.



Abstract simplicial complexes

Let P be a set. An abstract simplicial complex K
with vertex set P is a set of finite subsets of P
satisfying the two conditions :

1. The elements of P belong to K.

2. If τ ∈ K and σ ⊆ τ , then σ ∈ K.

The elements of K are the simplices.

IMPORTANT

Simplicial complexes can be seen at the same time as geometric/topological spaces
(good for top./geom. inference) and as combinatorial objects (abstract simplicial
complexes, good for computations).



Homology in a nutshell (with coeff. in Z/2Z)

Formalize the notion of connected components, cycles/holes, voids... in a topological
space (here we will restrict to simplicial complexes).

• 2 connected components (0-dim homology)
• 4 cycles (1-dim homology)
• 1 void (2-dim homology)

Empty torus



Homology in a nutshell (with coeff. in Z/2Z)

Let K be a d-dimensional simplicial complex. Let k ∈ {0, 1, · · · , d} and
{σ1, · · · , σp} be the set of k-simplices of K.

k-chain :

c =

p∑
i=1

εiσi with εi ∈ Z/2Z = {0, 1}

Sum of k-chains :

c+ c′ =

p∑
i=1

(εi + ε′i)σi and λ.c =

p∑
i=1

(λε′i)σi

where the sums εi + ε′i and the products λεi are modulo 2.

The space of k-chains :



Homology in a nutshell (with coeff. in Z/2Z)

The boundary operator :

The boundary ∂σ of a k-simplex σ is the sum of its (k − 1)-faces. This is a
(k − 1)-chain.

Ifσ = [v0, · · · , vk] then ∂kσ =
k∑
i=0

(−1)i[v0 · · · v̂i · · · vk]

The boundary operator is the linear map defined by

∂k : Ck(K) → Ck−1(K)
c → ∂kc =

∑
σ∈c ∂kσ

∂k∂k+1 := ∂k ◦ ∂k+1 = 0



Homology in a nutshell (with coeff. in Z/2Z)

Cycles and boundaries :

The chain complex associated to a complex K of dimension d

∅ → Cd(K)
∂→ Cd−1(K)

∂→ · · · Ck+1(K)
∂→ Ck(K)

∂→ · · · C1(K)
∂→ C0(K)

∂→ ∅

k-cycles :

Zk(K) := ker(∂ : Ck → Ck−1) = {c ∈ Ck : ∂c = ∅}

k-boundaries :

Bk(K) := im(∂ : Ck+1 → Ck) = {c ∈ Ck : ∃c′ ∈ Ck+1, c = ∂c′}

Bk(K) ⊂ Zk(K) ⊂ Ck(K)



Homology in a nutshell (with coeff. in Z/2Z)

Homology groups and Betti numbers :

Bk(K) ⊂ Zk(K) ⊂ Ck(K)

• The kth homology group of K : Hk(K) = Zk/Bk
• Tout each cycle c ∈ Zk(K) corresponds its homology class c +
Bk(K) = {c+ b : b ∈ Bk(K)}.

• Two cycles c, c′ are homologous if they are in the same homology
class : ∃b ∈ Bk(K) s. t. b = c′ − c(= c′ + c).

• The kth Betti number of K : βk(K) = dim(Hk(K)).

Remark : β0(K) = number of connected components of K.



Non homologous 1-cycles

Two homologous 1-cycles

A 1-boundary

Not a cycle

Cycles and boundaries



Filtrations of simplicial complexes

• A filtered simplicial complex (or a filtration) K built on top of a set X is
a family (Ka | a ∈ T), T ⊆ R, of subcomplexes of some fixed simplicial
complex K with vertex set X s. t. Ka ⊆ Kb for any a ≤ b.

• More generaly, filtration = nested family of topological spaces indexed by T.

Persistent homology of a filtered simplicial complexe encodes the evolution of the
homology of the subcomplexes.



Filtrations of simplicial complexes

• A filtered simplicial complex (or a filtration) K built on top of a set X is
a family (Ka | a ∈ T), T ⊆ R, of subcomplexes of some fixed simplicial
complex K with vertex set X s. t. Ka ⊆ Kb for any a ≤ b.

• More generaly, filtration = nested family of topological spaces indexed by T.

Many examples and ways to design filtrations depending on the application and
targeted objectives : sublevel and upperlevel sets, Čech complex,...



Sublevel set filtration associated to a function

• f a real valued function defined on the vertices of K
• For σ = [v0, · · · , vk] ∈ K, f(σ) = maxi=0,··· ,k f(vi)
• The simplices of K are ordered according increasing f values (and

dimension in case of equal values on different simplices).

0

1

2

3
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Example : the Vietoris-Rips filtration

Let V be a point cloud (in a metric space (X, d)).

The Vietoris-Rips complex Rips(V ) is the filtered simplicial complex indexed
by R whose vertex set is V and defined by :

σ = [p0p1 · · · pk] ∈ Rips(V, α) iff ∀i, j ∈ {0, · · · , k}, d(pi, pj) ≤ α

Easy to compute and fully determined by its 1-skeleton

Rips



Stability properties

“Stability theorem” : Close spaces/data sets have close persistence diagrams !

If X,Y are compact metric spaces, then

db(dgm(Rips(X)), dgm(Rips(Y))) ≤ 2dGH(X,Y).

Bottleneck distance Gromov-Hausdorff distance

Rem : This result also holds for other families of filtrations (particular case of a more general
thm).

[C., de Silva, Oudot - Geom. Dedicata 2013].

dGH(X,Y) := inf
Z,γ1,γ2

dH(γ1(X), γ2(X))

Z metric space, γ1 : X→ Z and γ2 : Y→ Z
isometric embeddings.



Hausdorff distance

Let A,B ⊂M be two compact subsets of a metric space (M,d)

dH(A,B) = max{sup
b∈B

d(b, A), sup
a∈A

d(a,B)}

where d(b, A) = supa∈A d(b, a).



Input : A filtration of a simplicial complex ∅ = K0 ⊂ K1 ⊂ · · · ⊂ Km = K,
s. t. Ki+1 = Ki ∪ σi+1 where σi+1 is a simplex of K.

Output : The Betti numbers β0, β1, · · · , βd of K.

β0 = β1 = · · · = βd = 0 ;
for i = 1 to m
k = dimσi − 1 ;
if σi is contained in a (k + 1)-cycle in Ki

then βk+1 = βk+1 + 1 ;
else βk = βk − 1 ;
end if ;

end for ;
output (β0, β1, · · · , βd) ;

An algorithm to compute Betti numbers
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Input : A filtration of a simplicial complex ∅ = K0 ⊂ K1 ⊂ · · · ⊂ Km = K,
s. t. Ki+1 = Ki ∪ σi+1 where σi+1 is a simplex of K.

Output : The Betti numbers β0, β1, · · · , βd of K.

β0 = β1 = · · · = βd = 0 ;
for i = 1 to m
k = dimσi − 1 ;
if σi is contained in a (k + 1)-cycle in Ki

then βk+1 = βk+1 + 1 ;
else βk = βk − 1 ;
end if ;

end for ;
output (β0, β1, · · · , βd) ;

Remark : At the ith step of the algorithm, the vector (β0, · · · , βd) stores the
Betti numbers of Ki.

An algorithm to compute Betti numbers



Input : A filtration of a simplicial complex ∅ = K0 ⊂ K1 ⊂ · · · ⊂ Km = K,
s. t. Ki+1 = Ki ∪ σi+1 where σi+1 is a simplex of K.

Output : The Betti numbers β0, β1, · · · , βd of K.

β0 = β1 = · · · = βd = 0 ;
for i = 1 to m
k = dimσi − 1 ;
if σi is contained in a (k + 1)-cycle in Ki

then βk+1 = βk+1 + 1 ;
else βk = βk − 1 ;
end if ;

end for ;
output (β0, β1, · · · , βd) ;

An algorithm to compute Betti numbers

Definition : A (k+1)-simplex σi is positive if it is contained in a (k+1)-cycle
in Ki. It is negative otherwise.

Create a new (k + 1)-cycle in Ki

Destroy a k-cycle in Ki

βk(K) = ](positive simplices) − ](negative simplices)



Input : A filtration of a simplicial complex ∅ = K0 ⊂ K1 ⊂ · · · ⊂ Km = K,
s. t. Ki+1 = Ki ∪ σi+1 where σi+1 is a simplex of K.

Output : The Betti numbers β0, β1, · · · , βd of K.

β0 = β1 = · · · = βd = 0 ;
for i = 1 to m
k = dimσi − 1 ;
if σi is contained in a (k + 1)-cycle in Ki

then βk+1 = βk+1 + 1 ;
else βk = βk − 1 ;
end if ;

end for ;
output (β0, β1, · · · , βd) ;

The algorithm can be easily adapted to keep track of an homology basis and
pairs positive simplices (birth of a new homological class) to negative simplices
(death of an existing homology class).

From homology to persistent homology



Persistent homology of filtered simplicial complexes

Let K = (Ka | a ∈ R) be a finite filtered simplicial complex with N simplicices
and let Ka1 ⊂ Ka2 ⊂ · · · ⊂ KaN be the discrete filtration induced by the entering
times of the simplices : Kai \Kai−1 = σai .
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Process the simplices according to their order of entrance in the filtration :

Let k = dimσai (ie. σai = [v0, · · · , vk])
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Persistent homology of filtered simplicial complexes
Process the simplices according to their order of entrance in the filtration :

Let k = dimσai (ie. σai = [v0, · · · , vk])
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(σaj , σai) : persistence pair

(aj , ai) ∈ R2 : point in the
persistence diagram

→
→



Persistent homology of filtered simplicial complexes
Process the simplices according to their order of entrance in the filtration :

Let k = dimσai (ie. σai = [v0, · · · , vk])

Case 1 : adding σai to Kai−1 creates a
new k-dimensional topological feature
in Kai (new homology class in Hk).

Kai−1

σai

⇒ the birth of a k-dim feature is registered.

Case 2 : adding σai to Kai−1 kills a
(k− 1)-dimensional topological feature
in Kai (homology class in Hk−1).

Kai−1

σai

⇒ persistence algo. pairs the simplex σai
to the simplex σaj that gave birth to the
killed feature.

(σaj , σai) : persistence pair

(aj , ai) ∈ R2 : point in the
persistence diagram

→
→

Important to remember : the
persistence pairs are determined by the

order on the simplices ; the corresponding
points in the diagrams are determined by

the indices.



The persistence algorithm : matrix version

The matrix of the boundary operator :

— M = (mij)i,j=1,··· ,m with coefficient in Z/2 defined by

mij = 1 if σi is a face of σj and mij = 0 otherwise

— For any column Cj , l(j) is defined by

(i = l(j))⇔ (mij = 1 and mi′j = 0 ∀i′ > i)

Input : ∅ = K0 ⊂ K1 ⊂ · · · ⊂ Km = K a d-dimensional filtration of a simplicial
complex K s. t. Ki+1 = Ki ∪ σi+1 where σi+1 is a simplex of K.



The persistence algorithm : matrix version

Compute the matrix of the boundary operator M
For j = 0 to m

While (there exists j′ < j such that l(j′) == l(j))
Cj = Cj + Cj′ mod(2) ;

End while
End for
Output the pairs (l(j), j) ;

Input : ∅ = K0 ⊂ K1 ⊂ · · · ⊂ Km = K a d-dimensional filtration of a simplicial
complex K s. t. Ki+1 = Ki ∪ σi+1 where σi+1 is a simplex of K.

Remark : The worst case complexity of the algorithm is O(m3) but much lower in
most practical cases.



The persistence algorithm : matrix version

A simple example :



Persistent homology with the GUDHI library

GUDHI :
• a C++/Python open source software library for TDA,
• a developers team, an editorial board, open to external contributions,
• provides state-of-the-art TDA data structures and algorithms : design

of filtrations, computation of pre-defined filtrations, persistence dia-
grams,...

• algorithms and tools for TDA and ML.

http ://gudhi.gforge.inria.fr/



If there is some time left...



Persistence from an algebraic perspective

Definition : A persistence module V is an indexed family of vector spaces (Va | a ∈
R) and a doubly-indexed family of linear maps (vba : Va → Vb | a ≤ b) which satisfy
the composition law vcb ◦ vba = vca whenever a ≤ b ≤ c, and where vaa is the identity
map on Va.

Examples :
— Let S be a filtered simplicial complex. If Va = H(Sa) and vba : H(Sa)→ H(Sb)

is the linear map induced by the inclusion Sa ↪→ Sb then (H(Sa) | a ∈ R) is
a persistence module.

— Given a metric space (X, dX) , H(Rips(X)) is a persistence module.
— If f : X → R is a function, then the filtration defined by the sublevel sets

of f , Fa = f−1((−∞, a]), induces a persistence module at homology level.



Persistence from an algebraic perspective

Definition : A persistence module V is an indexed family of vector spaces (Va | a ∈
R) and a doubly-indexed family of linear maps (vba : Va → Vb | a ≤ b) which satisfy
the composition law vcb ◦ vba = vca whenever a ≤ b ≤ c, and where vaa is the identity
map on Va.

Definition : A persistence module V is q-tame if for any a < b, vba has a finite rank.

Theorem :

q-tame persistence modules have well-defined persistence diagrams.

[C., Cohen-Steiner, Glisse, Guibas, Oudot - SoCG’09], [C., de Silva, Glisse,
Oudot 12]



Persistence from an algebraic perspective

Definition : A persistence module V is an indexed family of vector spaces (Va | a ∈
R) and a doubly-indexed family of linear maps (vba : Va → Vb | a ≤ b) which satisfy
the composition law vcb ◦ vba = vca whenever a ≤ b ≤ c, and where vaa is the identity
map on Va.

Definition : A persistence module V is q-tame if for any a < b, vba has a finite rank.

Theorem :

q-tame persistence modules have well-defined persistence diagrams.

Example : Let X be a precompact metric space. Then H(Rips(X)) is q-tame.

Recall that a metric space (X, ρ) is precompact if for any ε > 0 there exists a finite subset Fε ⊂ X such that dH (X, Fε) < ε (i.e.
∀x ∈ X, ∃p ∈ Fε s.t. ρ(x, p) < ε).

[C., Cohen-Steiner, Glisse, Guibas, Oudot - SoCG’09], [C., de Silva, Glisse,
Oudot 12]



Persistence from an algebraic perspective

Definition : A persistence module V is an indexed family of vector spaces (Va | a ∈
R) and a doubly-indexed family of linear maps (vba : Va → Vb | a ≤ b) which satisfy
the composition law vcb ◦ vba = vca whenever a ≤ b ≤ c, and where vaa is the identity
map on Va.

A homomorphism of degree ε between two persis-
tence modules U and V is a collection Φ of linear
maps

(φa : Ua → Va+ε | a ∈ R)

such that vb+εa+ε ◦ φa = φb ◦ uba for all a ≤ b.

Ua U b

V a+ε V b+ε

An ε-interleaving between U and V is specified by two homomorphisms of degree
ε Φ : U → V and Ψ : V → U s.t. Φ ◦ Ψ and Ψ ◦ Φ are the “shifts” of degree 2ε
between U and V.

Ua

V a+ε

Ua+2ε

V a+3ε· · ·

· · ·
φa

ψa+ε

ua+2ε
a

va+3ε
a+ε

· · ·

· · ·



Persistence from an algebraic perspective

Definition : A persistence module V is an indexed family of vector spaces (Va | a ∈
R) and a doubly-indexed family of linear maps (vba : Va → Vb | a ≤ b) which satisfy
the composition law vcb ◦ vba = vca whenever a ≤ b ≤ c, and where vaa is the identity
map on Va.

Stability Thm :

If U and V are q-tame and ε-interleaved for some ε ≥ 0 then

dB(dgm(U), dgm(V)) ≤ ε

[C., Cohen-Steiner, Glisse, Guibas, Oudot - SoCG ’09], [C., de Silva, Glisse,
Oudot 12]
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the composition law vcb ◦ vba = vca whenever a ≤ b ≤ c, and where vaa is the identity
map on Va.
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Exercise : Show the stability theorem for (tame) functions :
let X be a topological space and let f, g : X→ R be two tame functions. Then

dB(Df ,Dg) ≤ ‖f − g‖∞.



Persistence from an algebraic perspective

Definition : A persistence module V is an indexed family of vector spaces (Va | a ∈
R) and a doubly-indexed family of linear maps (vba : Va → Vb | a ≤ b) which satisfy
the composition law vcb ◦ vba = vca whenever a ≤ b ≤ c, and where vaa is the identity
map on Va.

Stability Thm :

If U and V are q-tame and ε-interleaved for some ε ≥ 0 then

dB(dgm(U), dgm(V)) ≤ ε

Strategy : build filtrations that induce q-tame homology persistence modules
and that turn out to be ε-interleaved when the considered spaces/functions are
O(ε)-close.

[C., Cohen-Steiner, Glisse, Guibas, Oudot - SoCG ’09], [C., de Silva, Glisse,
Oudot 12]



A few applications of persistence



Persistence-based clustering
Combine a mode seeking approach with (0-dim) persistence computation.

Input :
1. A finite set X of observations (point cloud with coordinates or pairwise distance
matrix),
2. A real valued function f defined on the observations (e.g. density estimate).

Goal : Partition the data according to the basins of attraction of the peaks of f

[C.,Guibas,Oudot,Skraba - J. ACM 2013]



Persistence-based clustering
Combine a mode seeking approach with (0-dim) persistence computation.

[C.,Guibas,Oudot,Skraba - J. ACM 2013]

1. Build a neighborhing graph G on top of X.

2. Compute the (0-dim) persistence of f to identify prominent peaks → number of
clusters (union-find algorithm).
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Persistence-based clustering
Combine a mode seeking approach with (0-dim) persistence computation.

[C.,Guibas,Oudot,Skraba - J. ACM 2013]

1. Build a neighborhing graph G on top of X.

2. Compute the (0-dim) persistence of f to identify prominent peaks → number of
clusters (union-find algorithm).

3. Chose a threshold τ > 0 and use the persistence algorithm to merge components
with prominence less than τ .

τ
τ = 0



Persistence-based clustering
Combine a mode seeking approach with (0-dim) persistence computation.

[C.,Guibas,Oudot,Skraba - J. ACM 2013]

τ
τ = 0

Complexity of the algorithm : O(n logn)

Theoretical guarantees :

- Stability of the number of clusters (w.r.t. perturbations of X and f).

- Partial stability of clusters : well identified stable parts in each cluster.

“soft ” clustering



Application to non-rigid shape segmentation
[Skraba, Ovsjanikov, C.,Guibas, NORDIA 10]

X : a 3D shape
f = HKS function on X

5 prominent
peaks/clusters

Problem : some part of clusters are unstable → dirty segments



Application to non-rigid shape segmentation
[Skraba, Ovsjanikov, C.,Guibas, NORDIA 10]

Problem : some part of clusters are unstable → dirty segments

Idea :
- Run the persistence based algorithm several times on random perturbations of f
(size bounded by the “persistence” gap).
- Partial stability of clusters allows to establish correspondences between clusters
across the different runs → for any x ∈ X, a vector giving the probability for x to
belong to each cluster.



Application to non-rigid shape segmentation
[Skraba, Ovsjanikov, C.,Guibas, NORDIA 10]



Topology-based unsupervised classification and anomaly
detection on cytometry data for medical diagnosis

An innovative start-up specialized in biological
diagnosis from cytometry data.

Objective : unsupervised learning in large point clouds (several millions) in me-
dium/high dimensions (≈ 4→ 80)

Applications : medical diagnosis from blood samples (1 point = 1 blood cell)

Methodology : TDA based approaches, combined with dim. reduction methods to
identify relevant patterns and subsamples.

[M. Glisse, L. Pujol et al 2022]



The problem of representation of persistence

Representations of
persistence

Machine
Learning / AIPersistence diagrams are not well-suited for

classical ML algorithms (the space of PD is
highly non linear)
Not always clear which part of the diagrams
carries the relevant information.

∞

0
0

X̂m Filt(X̂m)

dgm(Filt(X̂m))



• discrete measures : (interesting statistical properties [Chazal, Divol 2018])

• polynomial roots or evaluations [Di Fabio Ferri 2015] [Kalǐsnik 2016]

• Collections of 1D functions

• finite metric spaces [Carrière Oudot Ovsjanikov 2015]

→ sliced on lines [Carrière Oudot Cuturi 2017]

→ convolution with Gaussian kernel [Reininghaus et al. 2015] [Chepushtanova et
al. 2015] [Kusano Fukumisu Hiraoka 2016-17] [Le Yamada 2018]

A zoo of representations of persistence

(non exhaustive list - see also Gudhi representations)

→ persistence images [Adams et al 2017]

→ landscapes [Bubenik 2012]

→ Betti curves [Umeda 2017]



Persistence images
[Adams et al, JMLR 2017]

For K : R2 → R a kernel and H a bandwidth matrix (e.g. a symmetric
positive definite matrix), pose for u ∈ R2, KH(u) = |H|−1/2K(H−1/2 · u)

For D =
∑
i δpi a diagram, K : R2 → R a kernel, H a bandwidth matrix

and w : R2 → R+ a weight function, one defines the persistence surface of D
with kernel K and weight function w by :

∀u ∈ R2, ρ(D)(u) =
∑
i

w(pi)KH(u− pi) = D(wKH(u− ·))



Persistence diagrams as discrete measures

D
D :=

∑
p∈D

δp

• The space of measures is much nicer that the space of P. D. !
• In the general algebraic persistence theory, persistence diagrams

naturally appears as discrete measures in the plane.

• Many persistence representations can be expressed as

D(f) =
∑
p∈D

f(p) =

∫
fdD

for well-chosen functions f : R2 → H.

Motivations :

[C., de Silva, Glisse, Oudot 16]



Persistence diagrams as discrete measures

D
D :=

∑
p∈D

δp

Benefits :
• Interesting statistical properties
• Data-driven selection of well-adapted representations (supervised and

unsupervised, coming with guarantees)
• Optimisation of persistence-based functions

Many tools available and implemented in the GUDHI library



Filtrations revisited

Let n > 0 be an integer,
Fn : the collection of non-empty subsets of {1, . . . , n},
M : a real analytic compact d-dim. connected manifold (poss. with boundary).

Filtering function :

ϕ = (ϕ[J ])J∈Fn : Mn → R|Fn|

satisfiying the following conditions :

(K2) Invariance by permutation : For J ∈ Fn and for (x1, . . . , xn) ∈ Mn,
if τ is a permutation of the entries having support included in J , then
ϕ[J ](xτ(1), . . . , xτ(n)) = ϕ[J ](x1, . . . , xn).

(K3) Monotony : For J ⊂ J ′ ∈ Fn, ϕ[J ] ≤ ϕ[J ′].

Given x = (x1, · · · , xn), ϕ(x) induces an order on the faces of the simplex
with n vertices that is a filtration K(x) :

∀J ∈ Fn, J ∈ K(x, r)⇐⇒ ϕ[J ](x) ≤ r.



Filtrations revisited

Not : for x = (x1, . . . , xn) ∈Mn and for J a simplex, x(J) := (xj)j∈J

(K1) Absence of interaction : For J ∈ Fn, ϕ[J ](x) only depends on x(J).

(K2) Invariance by permutation : For J ∈ Fn and for (x1, . . . , xn) ∈ Mn,
if τ is a permutation of the entries having support included in J , then
ϕ[J ](xτ(1), . . . , xτ(n)) = ϕ[J ](x1, . . . , xn).

(K3) Monotony : For J ⊂ J ′ ∈ Fn, ϕ[J ] ≤ ϕ[J ′].

(K4) Compatibility : For a simplex J ∈ Fn and for j ∈ J , if ϕ[J ](x1, . . . , xn)
is not a function of xj on some open set U of Mn, then ϕ[J ] ≡
ϕ[J\{j}] on U .

(K5) Smoothness : The function ϕ is subanalytic and the gradient of each
of its entries (which is defined a.s.e.) is non vanishing a.s.e..



Filtrations revisited

Let n > 0 be an integer,
Fn : the collection of non-empty subsets of {1, . . . , n},
M : a real analytic compact d-dim. connected manifold (poss. with boundary).

Filtering function :

ϕ = (ϕ[J ])J∈Fn : Mn → R|Fn|

satisfiying the following conditions :

(K2) Invariance by permutation : For J ∈ Fn and for (x1, . . . , xn) ∈ Mn,
if τ is a permutation of the entries having support included in J , then
ϕ[J ](xτ(1), . . . , xτ(n)) = ϕ[J ](x1, . . . , xn).

(K3) Monotony : For J ⊂ J ′ ∈ Fn, ϕ[J ] ≤ ϕ[J ′].

Given x = (x1, · · · , xn), ϕ(x) induces an order on the faces of the simplex
with n vertices that is a filtration K(x) :

∀J ∈ Fn, J ∈ K(x, r)⇐⇒ ϕ[J ](x) ≤ r.



Filtrations revisited

Not : for x = (x1, . . . , xn) ∈Mn and for J a simplex, x(J) := (xj)j∈J

(K1) Absence of interaction : For J ∈ Fn, ϕ[J ](x) only depends on x(J).

(K2) Invariance by permutation : For J ∈ Fn and for (x1, . . . , xn) ∈ Mn,
if τ is a permutation of the entries having support included in J , then
ϕ[J ](xτ(1), . . . , xτ(n)) = ϕ[J ](x1, . . . , xn).

(K3) Monotony : For J ⊂ J ′ ∈ Fn, ϕ[J ] ≤ ϕ[J ′].

(K4) Compatibility : For a simplex J ∈ Fn and for j ∈ J , if ϕ[J ](x1, . . . , xn)
is not a function of xj on some open set U of Mn, then ϕ[J ] ≡
ϕ[J\{j}] on U .

(K5) Smoothness : The function ϕ is subanalytic and the gradient of each
of its entries (which is defined a.s.e.) is non vanishing a.s.e..



The example of the Vietoris-Rips filtration

ϕ[J ](x) = max
i,j∈J

d(xi, xj)

(K1) Absence of interaction : For J ∈ Fn, ϕ[J ](x) only depends on x(J).

(K2) Invariance by permutation : For J ∈ Fn and for (x1, . . . , xn) ∈ Mn,
if τ is a permutation of the entries having support included in J , then
ϕ[J ](xτ(1), . . . , xτ(n)) = ϕ[J ](x1, . . . , xn).

(K3) Monotony : For J ⊂ J ′ ∈ Fn, ϕ[J ] ≤ ϕ[J ′].

(K4) Compatibility : For a simplex J ∈ Fn and for j ∈ J , if ϕ[J ](x1, . . . , xn)
is not a function of xj on some open set U of Mn, then ϕ[J ] ≡
ϕ[J\{j}] on U .

(K5’) Smoothness : The function ϕ is subanalytic and the gradient of each of
its entries J of size larger than 1 is non vanishing a.e. and for J = {j},
ϕ[{j}] ≡ 0.
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The density of expected persistence diagrams

Theorem : Fix n ≥ 1. Assume that :
• M is a real analytic compact d-dimensional connected submanifold

possibly with boundary,
• X is a random variable on Mn having a density with respect to the

Haussdorf measure Hdn,
• K satisfies the assumptions (K1)-(K5).

Then, for s ≥ 0, E[Ds[K(X)]] has a density with respect to the Lebesgue
measure on the half plane ∆ = {(b, d) ∈ R2 : b ≤ d}.



The density of expected persistence diagrams

Theorem : Fix n ≥ 1. Assume that :
• M is a real analytic compact d-dimensional connected riemannian ma-

nifold possibly with boundary,
• X is a random variable on Mn having a density with respect to the

Haussdorf measure Hdn,
• K satisfies the assumptions (K1)-(K4) and (K5’).

Then, for s ≥ 1, E[Ds[K(X)]] has a density with respect to the Lebesgue
measure on ∆. Moreover, E[D0[K(X)]] has a density with respect to the
Lebesgue measure on the vertical line {0} × [0,∞).



The density of expected persistence diagrams

Theorem : Fix n ≥ 1. Assume that :
• M is a real analytic compact d-dimensional connected riemannian ma-

nifold possibly with boundary,
• X is a random variable on Mn having a density with respect to the

Haussdorf measure Hdn,
• K satisfies the assumptions (K1)-(K4) and (K5’).

Then, for s ≥ 1, E[Ds[K(X)]] has a density with respect to the Lebesgue
measure on ∆. Moreover, E[D0[K(X)]] has a density with respect to the
Lebesgue measure on the vertical line {0} × [0,∞).

Theorem [smoothness] : Under the assumption of previous theorem, if mo-
reover X ∈ Mn has a density of class Ck with respect to Hnd. Then, for
s ≥ 0, the density of E[Ds[K(X)]] is of class Ck.



Sketch of proof

1. There exists a partition of the complement of a (subanalytic) set of
measure 0 in Mn by open sets V1, · · · , VR such that :

• the order of the simplices of K(x) is constant on each Vr,
• for any r = 1, · · · , R, and any x ∈ Vr,

Ds[K(x)] =

Nr∑
i=1

δri

with ri = (ϕ[Ji1 ](x), ϕ[Ji2 ](x)) where Nr, Ji1 , Ji2 only depends on
Vr.

• Ji1 , Ji2 can be chosen so that the differential of

Φir : x ∈ Vr → ri = (ϕ[Ji1 ](x), ϕ[Ji2 ](x))

has maximal rank (2).



Sketch of proof

2.The expected diagram can be written as

E[Ds[K(X)]] =
R∑
r=1

E [1{X ∈ Vr}Ds[K(X)]] =
R∑
r=1

E

[
1{X ∈ Vr}

Nr∑
i=1

δri

]

=
R∑
r=1

Nr∑
i=1

E [1{X ∈ Vr}δri ]



Sketch of proof

2.The expected diagram can be written as

E[Ds[K(X)]] =
R∑
r=1

E [1{X ∈ Vr}Ds[K(X)]] =
R∑
r=1

E

[
1{X ∈ Vr}

Nr∑
i=1

δri

]

=
R∑
r=1

Nr∑
i=1

E [1{X ∈ Vr}δri ]

3. Use the co-area formula :

µir(B) = P (Φir(X) ∈ B,X ∈ Vr)

=

∫
Vr

1{Φir(x) ∈ B}κ(x)dHnd(x)

=

∫
u∈B

∫
x∈Φ−1

ir (u)

(JΦir(x))−1κ(x)dHnd−2(x)du.

µir

Density of X

Density of µir



The Hausdorff measure and the co-area formula

Definition : Let k be a non-negative number. For A ⊂ RD, and δ > 0,
consider

Hδk(A) := inf

{∑
i

diam(Ui)
k, A ⊂

⋃
i

Ui and diam(Ui) < δ

}
.

The k-dimensional Haussdorf measure on RD of A is defined by Hk(A) :=
limδ→0Hδk(A).

Theorem [Co-area formula] : Let M (resp. N) be a smooth Riemannian
manifold of dimension m (resp n). Assume that m ≥ n and let Φ : M → N
be a differentiable map. Denote by DΦ the differential of Φ. The Jacobian
of Φ is defined by JΦ =

√
det((DΦ)× (DΦ)t). For f : M → N a positive

measurable function, the following equality holds :∫
M

f(x)JΦ(x)dHm(x) =

∫
N

(∫
x∈Φ−1({y})

f(x)dHm−n(x)

)
dHn(y).



Persistence images
[Adams et al, JMLR 2017]

For K : R2 → R a kernel and H a bandwidth matrix (e.g. a symmetric
positive definite matrix), pose for u ∈ R2, KH(z) = |H|−1/2K(H−1/2 · u)

For D =
∑
i δri a diagram, K : R2 → R a kernel, H a bandwidth matrix and

w : R2 → R+ a weight function, one defines the persistence surface of D with
kernel K and weight function w by :

∀z ∈ R2, ρ(D)(u) =
∑
i

w(ri)KH(u− ri) = D(wKH(u− ·))



Persistence images
[Adams et al, JMLR 2017]

For K : R2 → R a kernel and H a bandwidth matrix (e.g. a symmetric
positive definite matrix), pose for u ∈ R2, KH(z) = |H|−1/2K(H−1/2 · u)

For D =
∑
i δri a diagram, K : R2 → R a kernel, H a bandwidth matrix and

w : R2 → R+ a weight function, one defines the persistence surface of D with
kernel K and weight function w by :

∀z ∈ R2, ρ(D)(u) =
∑
i

w(ri)KH(u− ri) = D(wKH(u− ·))

⇒ persistence surfaces can be seen as kernel estimates of E[Ds[K(X)]].



Persistence images

The realization of 3
different processes

The overlay of 40
different persistence

diagrams

The persistence images
with weight function
w(r) = (r2 − r1)3 and

bandwith selected using
cross-validation.



Thank you for your attention !
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