

Point process and CNN for small object detection in satellite images

Jules Mabon, Inria, Université Côte d'Azur In collaboration with Mathias Ortner (Airbus DS) and Josiane Zerubia (Inria)

Journées Geosto-MIA, 2022

Introduction

1. Introduction

- 2. Point processes for object detection
- 3. Energy Model
- 4. Configuration inference
- 5. Results
- 6. Conclusion et Perspectives

Introduction

Introduction

Goals

 Detection and vectorization of objects in satellite images

Challenges

- small sized objects at 50 cm/pixel
- Visually diverse environment and objects
- Variable density
- Priors on interactions

Image from the DOTA¹dataset

¹Xia et al., "DOTA: A Large-Scale Dataset for Object Detection in Aerial Images," 2018.

Innia

02

Point processes for object detection

1. Introduction

2. Point processes for object detection Definitions and notations MPP for objects detection

3. Energy Model

4. Configuration inference

5. Results

6. Conclusion et Perspectives

Point process: definition

Marked point process

- configuration of points $Y = \{y_0, \ldots, y_n\}$
- y ∈ S × M, S ⊂ ℝ² the image space, M the mark space

•
$$Y \in \mathcal{P}, \ \mathcal{P} = \bigcup_{n=0}^{\infty} (S \times M)^n$$

• Y : realization of a random variable in \mathcal{P}

Parametrization

Oriented rectangle

M = R⁺ × [0, 1] × [0, π]
 y = (y_i, y_j, y_s, y_r, y_α)

Point process density

Y is the realization of a random variable of density h

Point process density (Gibbs)

$$h(Y|X) \propto \exp(-U(Y,X)) \tag{1}$$

Point process measure

Measure of the point process,

$$\nu(B) = \int_{B} h(Y|X)\mu(dY)$$
(2)

 $\mu(\cdot)$ the measure of the Poisson point process, $B\subset S$

Ayana Inría

Point process density

Y is the realization of a random variable of density h

Point process density (Gibbs)

$$h(Y|X) \propto \exp(-U(Y,X)) \tag{1}$$

Building the energy model

We want U such that

$$Y^{+} = \underset{Y \in \mathcal{P}}{\operatorname{argmin}} U(Y, X)$$
(2)

X: image, Y^+ : ground truth for image X, \mathcal{N}_y : neighborhood of y in Y

Basic energy model

$$U(Y,X) = \sum_{y \in Y} U_{data}(y,X) + U_{prior}(y,\mathcal{N}y)$$

Basic energy model

$$U(Y,X) = \sum_{y \in Y} U_{data}(y,X) + U_{prior}(y,\mathcal{N}_y)$$

Prior term

Basic energy model

$$U(Y,X) = \sum_{y \in Y} U_{data}(y,X) + U_{prior}(y,\mathcal{N}y)$$

Data term

Ayana Ínría

Contrast measures as data term

Precision-recall for the T-test measure² (red) and for a measure based on image gradient³ (orange).

²Lacoste *et al.*, "Point processes for unsupervised line network extraction in remote sensing," 2005. ³Kulikova *et al.*, "Extraction of Arbitrarily-Shaped Objects Using Stochastic Multiple Birth-and-Death Dynamics and Active Contours," 2010.

03

Energy Model

1. Introduction

2. Point processes for object detection

3. Energy Model

Learned data term Prior energy terms Resulting energy model Energies combination

- 4. Configuration inference
- 5. Results

10 - J. Mabon - 09/22

6. Conclusion et Perspectives

Data term from a CNN

$$U(Y,X) = \sum_{y \in Y} U_{data}(y,X) + U_{prior}(y,\mathcal{N}y)$$

Data term

$$U_{data}(y,X) = U_{pos}(y,X) + \sum_{k \in \{s,r,\alpha\}} U_k(y,X)$$

Inferring the energy map⁴

⁴Mabon *et al.*, "Processus ponctuels marqués et réseaux de neurones convolutifs pour la détection d'objets dans des images de télédétection," 2022.

na Ínría

⁴Mabon *et al.*, "Processus ponctuels marqués et réseaux de neurones convolutifs pour la détection d'objets dans des images de télédétection," 2022.

ana Ínría

Energy map

⁴Mabon *et al.*, "Processus ponctuels marqués et réseaux de neurones convolutifs pour la détection d'objets dans des images de télédétection," 2022.

ana Ínría

⁴Mabon *et al.*, "Processus ponctuels marqués et réseaux de neurones convolutifs pour la détection d'objets dans des images de télédétection," 2022.

ana Inría

Inferring the energy map⁴

⁴Mabon *et al.*, "Processus ponctuels marqués et réseaux de neurones convolutifs pour la détection d'objets dans des images de télédétection," 2022.

Inferring the energy map⁴

⁴Mabon *et al.*, "Processus ponctuels marqués et réseaux de neurones convolutifs pour la détection d'objets dans des images de télédétection," 2022.

Position energy term

Position energy term

$$U_{pos}(y,X) = -\operatorname{div}(\widehat{V}_X)[y_i, y_j]$$
(3)

- Inference of a vector map \widehat{V}_X to better separate instances
- ▶ $A[y_i, y_j]$: interpolated value of map A at position $[y_i, y_j]$
- ▶ $a, b \in \mathbb{R}$, energy model parameters (learned)
- ▶ \widehat{V}_X pre-computed : $U_{pos}(y, X)$ defined $\forall y \in S \times M$

Learning the position energy

Using labeled data X, Y^+ we minimize

Cost function

$$\mathcal{L}_{pos}(\widehat{V}_X, Y^+) = \mathsf{MSE}(\widehat{V}_X, V_{Y^+}) \tag{4}$$

- MSE : Mean Squared Error
- \triangleright V_{Y⁺} : Vector field built from the ground truth Y_{GT}
- Data augmentation: patch sampling, rotation, hue/contrast/luminosity variations etc.

Position energy term: example

Image X

 $\operatorname{div}(\widehat{V}_X)$ blue<0, red>0 Ayana Inría

15 – J. Mabon – 09/22

Marks energy term: energy tensor⁵

Image X(H, W)

⁵Mabon *et al.*, "Processus ponctuels marqués et réseaux de neurones convolutifs pour la détection d'objets dans des images de télédétection," 2022.

ana Ínría

Marks energy term: energy tensor⁵

⁵Mabon *et al.*, "Processus ponctuels marqués et réseaux de neurones convolutifs pour la détection d'objets dans des images de télédétection," 2022.

na (nría-

Marks energy term: energy tensor⁵

⁵Mabon *et al.*, "Processus ponctuels marqués et réseaux de neurones convolutifs pour la détection d'objets dans des images de télédétection," 2022.

a Ínnía

Marks energy term: energy tensor⁵

⁵Mabon *et al.*, "Processus ponctuels marqués et réseaux de neurones convolutifs pour la détection d'objets dans des images de télédétection," 2022.

Marks energy term: energy tensor⁵

⁵Mabon *et al.*, "Processus ponctuels marqués et réseaux de neurones convolutifs pour la détection d'objets dans des images de télédétection," 2022.

Marks energy term

Energy on marks

For each mark m

$$U_m(y, X) = -\widehat{A}_X[y_i, y_j \operatorname{remap}(y_m)]$$
(5)

- ▶ A[i, j, k] : interpolated value of tensor A at coordinates [i, j, k]
- index(y_m) : index corresponding to the discretization of values from m in N_c intervals from m_{min} to m_{max}
- \widehat{A}_X pre-computed : $U_m(y, X)$ defined $\forall y \in S \times M$

$$\blacktriangleright \text{ remap}(y_m) = N_c \frac{y_m - m_{min}}{m_{max} - m_{min}}$$

Ayana Inría

17 – J. Mabon – 09/22

Learning the mark energy term

Cost function

$$\mathcal{L}_{m}(\widehat{A}_{X}, Y_{GT}) = \frac{1}{|P|} \sum_{\rho \in P} \mathsf{CE}(\mathsf{Softmax}(\widehat{A}_{X}[\rho]), \mathsf{Softmax}(A_{Y_{GT}}[\rho]))$$
(6)

- CE : Cross Entropy, P : set of all pixels from X, A[p] : value of tensor A at position p
- $A_{Y_{GT}}$ tensor built from the ground truth Y_{GT}
- Data augmentation
- Y augmented during training : we offset marks randomly with a normal law

Priors on configurations

No-overlap prior

$$U_o(y, \mathcal{N}_y) = \max_{\tilde{y} \in \mathcal{N}_y} \left\{ \frac{\operatorname{area}(\tilde{y} \cap y)}{\min\{\operatorname{area}(\tilde{y}), \operatorname{area}(y)\}} \right\}$$
(7)

Alignment prior

$$U_{a}(y, \mathcal{N}_{y}) = \min_{\tilde{y} \in \mathcal{N}_{y}} \left\{ -|\cos(|y_{\alpha} - \tilde{y}_{\alpha}|)| \right\}$$
(8)

Size prior

$$U_s(y) = \max\{s_{min} - \operatorname{area}(y), \operatorname{area}(y) - s_{max}, 0\}$$
(9)

hyperparameters $s_{min}, s_{max} \in \mathbb{R}^+$, minimal and maximal sizes 19 - J. Mabon - 09/22 Energy model $Y = \{y_1, \ldots, y_n\}$ Position interp. over (y_i, y_i) $U_p(X, y), y \in Y$ *V* (*H*, *W*, 2) $-\operatorname{div}(\widehat{V}_X)$ Unet (H,W) $\sum_{y \in Y} f_{\theta}(\cdot)$ $\rightarrow U_{tot}(\theta, X, Y)$ Mark m х B (H, W, 3) (H, W, N_F) interp. over (y_i, y_i, y_m) $U_m(X, y), y \in Y$ Prior \widehat{A}_m (H, W, N_C) $U_{prior1}(X, y), y \in Y$

Energies combination

Multiple energy terms

Energy	Notation
position	$U_{pos}(y,X)$
marks $m \in \{s, r, \alpha\}$	$U_m(y,X)$
size	$U_s(y)$
superposition	$U_s(y, \mathcal{N}_y)$
alignment	$U_a(y, \mathcal{N}_y)$

Total energy

$$U_{tot} = \sum_{y \in Y} f_{\theta} \left(U_1, \ldots, U_k \right)$$

With $f_{\theta} : \mathbb{R}^k \to \mathbb{R}$ How to combine energy terms ?

Linear combination

Total energy

$$U_{tot}(Y, X, \theta) = \sum_{y \in Y} \theta_1 U_1(y, X) + \dots + \theta_k U_k(y, \mathcal{N}_y, X)$$
(10)

Linear combination

Total energy

$$U_{tot}(Y, X, \theta) = \sum_{y \in Y} \theta_1 U_1(y, X) + \dots + \theta_k U_k(y, \mathcal{N}_y, X)$$
(10)

- Weights $\theta \in \mathbb{R}^k$
- ► $\hat{\theta}$ set by trial and error, aiming for $Y^+ = \underset{Y \in \mathcal{P}}{\operatorname{armgin}} U_{tot}(Y, X, \hat{\theta})$
- Calibration needed :

for l = 1, ..., k, must find $d_l \in \mathbb{R}$ so that $U'_l(y, X) = U_l(y, X) - d_l < 0$ for valid y and > 0 for non-valid y

Learning the energy combination model

New total energy

We introduce a scalar θ_0 to learn the calibration,

$$U_{tot}(Y,X,\theta) = \sum_{y \in Y} \theta_1 U_1(y,X) + \dots + \theta_k U_k(y,\mathcal{N}_y,X) + \theta_0$$
(11)

Learning the energy combination model

Contrastive learning⁶

$$Y^+ = rmgin_{Y \in \mathcal{P}} U_{tot}(Y, X, \widehat{ heta})$$
 translates as local constraint⁷to

$$U_{tot}(Y^+, X, \theta) < U_{tot}(Y^-, X, \theta), \quad Y^- \sim Q(Y^+ \to \cdot)$$
 (12)

We minimize the loss

$$\mathcal{L}(Y^+, X, \theta) = U_{tot}(Y^+, X, \theta) - U_{tot}(Y^-, X, \theta)$$
(13)

Perturbation kernel Q needs defining

⁶Mabon *et al.*, "CNN-based energy learning for MPP object detection in satellite images," 2022. ⁷Craciun *et al.*, "Joint Detection and Tracking of Moving Objects Using Spatio-temporal Marked ^{24 – J. Mab}Point⁹Processes," 2015.

Learning the energy combination model

Extending to maximum likelihood training

Hinton⁸ and Du⁹ show that if we sample Y^- as

$$Y^{-} \sim p_{\theta}, \quad p_{\theta} \propto \exp(-U_{tot}(\cdot, X, \theta))$$
 (14)

Íngia

and it minimizes the negative log likelihood

$$\mathcal{L}_{nll}(\theta, \mathcal{S}) = -\log(P(Y_1^+, \dots, Y_N^+ | X_1, \dots, X_N, \theta))$$
(15)

With training set $S = \{(X_N, Y_N^+), \dots, (X_N, Y_N^+)\}$

⁹Hinton, "Training Products of Experts by Minimizing Contrastive Divergence," 2002.
 ⁹Du and Mordatch, "Implicit Generation and Modeling with Energy Based Models."

04

Configuration inference

1. Introduction

2. Point processes for object detection

3. Energy Model

4. Configuration inference Point process simulation

5. Results

6. Conclusion et Perspectives

Point process simulation

Inferring the best fitting configuration

• Knowing
$$h(Y|X) \propto \exp(-U(Y,X))$$

• We look for $\widehat{Y} = \operatorname{argmin}_{Y \in \mathcal{P}} U_{tot}(Y, X, \widehat{\theta})$

Reversible Jump Markov Chain Monte Carlo¹⁰

- Simulate $Y_t \sim h/T_t$, with simulated annealing $(T_{t+1} = 0.999T_t)$
- \triangleright Y_t converges towards \widehat{Y}

¹⁰Green, "Reversible jump Markov chain Monte Carlo computation and Bayesian model determination," 1995.

- Markov chain with stationary density $Y_t \sim h/T_t$
- Simulated annealing, with geometrical decrease of $T(T_{t+1} = 0.999T_t)$

Avana Ingia-

¹¹Geyer and Møller, "Simulation Procedures and Likelihood Inference for Spatial Point Processes," 1994.

- Markov chain with stationary density $Y_t \sim h/T_t$
- Simulated annealing, with geometrical decrease of $T(T_{t+1} = 0.999T_t)$
- Minimal proposition kernel¹¹: Birth-Death

¹¹Geyer and Møller, "Simulation Procedures and Likelihood Inference for Spatial Point Processes," 1994.

- Markov chain with stationary density $Y_t \sim h/T_t$
- Simulated annealing, with geometrical decrease of $T(T_{t+1} = 0.999T_t)$
- Minimal proposition kernel¹¹: Birth-Death
- + Birth map defined by the energy map built from the energy maps
- + Translation/rotation/scaling sampled according to densities set by energy maps

ana Ínsia-

¹¹Geyer and Møller, "Simulation Procedures and Likelihood Inference for Spatial Point Processes," 1994.

- Markov chain with stationary density $Y_t \sim h/T_t$
- Simulated annealing, with geometrical decrease of $T(T_{t+1} = 0.999T_t)$
- Minimal proposition kernel¹¹: Birth-Death
- + Birth map defined by the energy map built from the energy maps
- + Translation/rotation/scaling sampled according to densities set by energy maps
- a move $Y \rightarrow Y'$ is accepted with probability

$$\alpha(Y \to Y') = \min\left\{1, \frac{Q(Y' \to Y)}{Q(Y \to Y')} \exp\left(\frac{U_{tot}(Y, X, \widehat{\theta}) - U_{tot}(Y', X, \widehat{\theta})}{T}\right)\right\}$$
(16)

¹¹Geyer and Møller, "Simulation Procedures and Likelihood Inference for Spatial Point Processes," 1994.

Speeding up the simulation : parallel sampling

The point process is Markovian: points do not interact beyond a maximum distance.

Verdie and Lafarge¹²show one can split the space into sets where $\alpha(Y \rightarrow Y')$ are independent

¹²Verdié and Lafarge, "Detecting Parametric Objects in Large Scenes by Monte Carlo Sampling," 2014.

05

Results

1. Introduction

2. Point processes for object detection

- 3. Energy Model
- 4. Configuration inference

5. Results

6. Conclusion et Perspectives

Results on remote sensing datasets

- Images subsampled to 50 cm/pixel
- Compare our MPP+CNN method against BBA-Vec.¹³
- Various datasets :
 - DOTA¹⁴ (labeled with oriented rectangles, training dataset)
 - COWC¹⁵ (labeled with centers)
 - Airbus aerial images (unlabeled)
- MPP+CNN^{*}: manual weights θ , MPP+CNN[†]: learned weights θ

iana Índia-

¹³Yi *et al.*, "Oriented Object Detection in Aerial Images with Box Boundary-Aware Vectors," 2021.
¹⁴Xia *et al.*, "DOTA: A Large-Scale Dataset for Object Detection in Aerial Images," 2018.
¹⁵Mundhenk *et al.*, "A Large Contextual Dataset for Classification, Detection and Counting of Cars with Deep Learning," 2016.

32 - J. Mabon - 09/22

Ayana Ínría

33 – J. Mabon – 09/22

Ayana Ínría

Airbus data, difficult example BBA-Vec.

MPP+CNN (ours)

Ayana Ínría

Effects of fewer training data

Training on 100% and 25% of the training dataset

ana Ínría

DOTA : Metrics

F1@t: F1 metric for IOU threshold t

Higher t requires a finer match between GT to the prediction

Method	Training	F1@0.25	Pr@0.25	Rc@0.25	F1@0.5	Pr@0.5	Rc@0.5
	data						
BBA-Vec. ¹⁶	100%	0.68	0.63	0.74	0.48	0.43	0.53
BBA-Vec.	50%	0.58	0.55	0.62	0.23	0.22	0.25
BBA-Vec.	25%	0.52	0.51	0.54	0.13	0.12	0.15
MPP+CNN	100%	0.66	0.56	0.79	0.42	0.32	0.64
MPP+CNN	50%	0.57	0.46	0.75	0.31	0.22	0.52
MPP+CNN	25%	0.55	0.48	0.64	0.34	0.26	0.49

¹⁶Yi et al., "Oriented Object Detection in Aerial Images with Box Boundary-Aware Vectors," 2021.

Ayana Inría

06

Conclusion et Perspectives

1. Introduction

2. Point processes for object detection

- 3. Energy Model
- 4. Configuration inference
- 5. Results
- 6. Conclusion et Perspectives

Conclusion & perspectives

Contributions

- Likelihood terms learned with CNNs, replacing contrast measures.
- Propose a method to learn the relative weights of energies.
- Results equivalent to SOTA (metrics wise) while having more spatial coherence/regularization thanks to added priors.

Perspectives

Working on applying this model to time series where the priors on dynamics are stronger

ana Índia-

Publications & Code

Publications

See julesmabon.com/publications or team.inria.fr/ayana/publications-hal

- Processus ponctuels marqués et réseaux de neurones convolutifs pour la détection d'objets dans des images de télédétection, GRETSI, 2022, Nancy
- Point process and CNN for small object detection in satellite images, SPIE, Image and Signal Processing for Remote Sensing XXVIII, 2022, Berlin
- CNN-based energy learning for MPP object detection in satellite images, IEEE, International workshop on machine learning for signal processing, 2022, Xi'an (virtual)

Code

Available at github.com/Ayana-Inria/MPP_CNN_RS_object_detection

Innia

Ínría_

Thank you ! Any questions ?

Bibliography I

- G.-S. Xia *et al.*, "DOTA: A large-scale dataset for object detection in aerial images," in *Proc. CVPR*, 2018.
- [2] C. Lacoste, X. Descombes, and J. Zerubia, "Point processes for unsupervised line network extraction in remote sensing," *IEEE TPAMI*, vol. 27, no. 10, pp. 1568–1579, 2005.
- [3] M. S. Kulikova, I. H. Jermyn, X. Descombes, E. Zhizhina, and J. Zerubia, "Extraction of arbitrarily-shaped objects using stochastic multiple birth-and-death dynamics and active contours," in *Proc. Computational Imaging VIII*, SPIE, 2010.
- [4] J. Mabon, M. Ortner, and J. Zerubia, "Processus ponctuels marqués et réseaux de neurones convolutifs pour la détection d'objets dans des images de télédétection," in GRETSI 2022 -XXVIIIème Colloque Francophone de Traitement du Signal et des Images, Nancy, France, Sep. 2022. [Online]. Available: https://hal.inria.fr/hal-03715337.
- [5] —,"Cnn-based energy learning for mpp object detection in satellite images," in IEEE International workshop on machine learning for signal processing, 2022.

Ayana Ínría

Bibliography II

- [6] P. Craciun, M. Ortner, and J. Zerubia, "Joint detection and tracking of moving objects using spatio-temporal marked point processes," in *Proc. IEEE Winter Conf. on Applications of Computer Vision*, 2015.
- [7] G. E. Hinton, "Training products of experts by minimizing contrastive divergence," Neural Computation, vol. 14, no. 8, pp. 1771–1800, 2002.
- [8] Y. Du and I. Mordatch, "Implicit Generation and Modeling with Energy Based Models," *NeurIPS 2019*, p. 11,
- P. J. Green, "Reversible jump Markov chain Monte Carlo computation and bayesian model determination," *Biometrika*, vol. 82, no. 4, pp. 711–732, 1995.
- [10] C. J. Geyer and J. Møller, "Simulation procedures and likelihood inference for spatial point processes," Scandinavian journal of statistics, pp. 359–373, 1994.
- [11] Y. Verdié and F. Lafarge, "Detecting parametric objects in large scenes by Monte Carlo sampling," International Journal of Computer Vision, vol. 106, no. 1, pp. 57–75, 2014.

Ayana Ínría

Bibliography III

- [12] J. Yi, P. Wu, B. Liu, Q. Huang, H. Qu, and D. Metaxas, "Oriented object detection in aerial images with box boundary-aware vectors," in *Proc. IEEE Winter Conf. on Applications of Computer Vision*, 2021.
- [13] T. N. Mundhenk, G. Konjevod, W. A. Sakla, and K. Boakye, "A Large Contextual Dataset for Classification, Detection and Counting of Cars with Deep Learning," in *Proc. ECCV*, 2016.

Ayana Inría

Fin !

